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I THE DESIGN OF OBSERVERS

FOR THE MATCALS SYSTEMI
ABSTRACT

Three observers are designed for a reduced order system that represents

the lateral system of the F4J aircraft in an automatic landing configura-

tion. The observers are to be used in the aircraft's lateral control sys-

tem to estimate its lateral position and lateral velocity, in place of the

a-B filter that is currently used to estimate position and velocity. Re-

sults that are obtained from simulations of the F4J aircraft lateral control

system indicate that an observer may be used to improve the system's re-

sponse.
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I. INTRODUCTION

This report gives the results of the continuation of the studies des-

scribed in the interim report of this contract [1]. The interim report

described the design of a observer to replace the a-s filter in the flight

dynamics and control module of the F4J aircraft lateral control system.

This system is a part of the Marine Air Traffic Control and Landing System

(MATCALS).

The observer systems are compared to four different a-B systems. The

first system is the SPN-42 system [3], which is called the a-0 system in

this report. The second system is the SPN-42 system with the controller

gains reduced by 50% to reduce the system noise response. The third sys-

tem is called the ydot system, and is described in Chapter II. The fourth

system is called the model 2 system, and has been used in mode 1 (automatic)

I landings [3]. The criteria of comparison for the systems are the radar-

jnoise response and the wind response.
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J II. MATCALS SYSTEM

This chapter first contains a brief description of the lateral con-

trol system of the F4J aircraft in an automatic landing configuration

(MATCALS). Next various system design criteria are developed. Finally,

two variations of this control system are presented. For the first vari-

ation, the loop gain is reduced by 50 percent. In the second variation,

it is assumed that the aircraft lateral velocity is available as a feed-

back signal.

F4J Lateral Control System

A complete description of the F4J aircraft in the MATCALS configura-

tion is given in [2]. A brief description of this system will be given

here.

A block diagram of the F4J lateral control system is given in Figure

2-1. The block labeled "aircraft system" is the aircraft with autopi-

lots. The signal 0(t) is the command input to the bank autopilot, and

y(t) is the lateral distance of the aircraft from the extended centerline

of the runway. The signal w(t) models the wind input to the aircraft.

The signal "radar noise" represents the measurement inaccuracies in the

determination of the aircraft position by the radar, and YR(k) is the

aircraft position as measured by the radar. The a-B filter-controller

combination is basically a proportional-integral-derivative (PID)

2-I
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controller used to compensate the closed-loop system. This combination

also contains filtering to reduce the effects of the radar noise signal.

System Design Criteria

Even though the MATCALS control systems are discrete in nature, the

important design criteria can be developed and understood by considering

the equivalent analog system. The equivalent analog system is considered

here because the derivations are much simpler.

The analog equivalent of the lateral control system of Figure 2-1

is given in Figure 2-2. In the controller, KI is the gain in the inte-

gral path, Kp is the gain in the proportional path, and KD is the gain

in the derivative path. For the F4J lateral control system, Kp = KD =

0.75, and KI = .00333 at close range. The noise-filtering transfer func-

tion has been omitted, since it does not affect the following derivations.

The transfer function from bank command input to position output for the

aircraft is Gl(s), and from wind input to position output is G2 (s). The

aircraft velocity &(t) is needed for later derivations. Y rn(s) is the

radar, noise signal, and Y com(s) is the system command signal.

Two transfer functions of critical importance to system operation

are the transfer function from the radar noise signal to the position

output and the one from the wind to the position output. From Figure

2-2, we see that

Y(S) s (KP+KI/s+KDs)G (s)

rn I + (KP+KI/s+KDs)Gl(S) (2-1)

and

2-3
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= + G2(s) (2-2)
W(H T(Kp+K 1/s+K 0s)G1(s)I

It is necessary that the plane response very little to the radar

noise. However, the transfer function for the command input, Ycom' to

position output is, from Figure 2-2,

y(S) (Kp+KI/s+KDs)G (s)

Ycorn) = 1 + (Kp+KI/s+KDs)G (s)

This transfer function is identical to that of Y(s)/Y rn(s). Thus, if

system response to the radar noise is reduced, the system response to

the system command is also reduced. For low frequencies;

(Kp+KI/s+KDs)G l (s) >> 1 (2-4)

Then, from (2-1) and (2-3),

1Y(S) YS (2-5)
Ycorns Yrn(S

I S=ji s=j

Hence, to reduce noise response, we must effectively reduce system band-

width; i.e., we must reduce the frequency range over which (2-4) is

satisfied.

However, reducing the frequency range over which (2-4) is satisfied

increases the system response to wind. If (2-4) is satisfied, then for

this frequency range (2-2) becomes
Y(S) G2(s)(26

W(S) = (Kp+KI/s+KDs)GI (s) (2-6)

2-5
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This gain is small, since the denominator is large. But, if the denomi-

nator is decreased in order to reduce the response to radar noise, the

response to wind is increased.

In summary, the lateral control system must be redesigned in such a

manner that the system response to radar noise is reduced, while the

open-loop gain as given in (2-4) remains large such that system wind re-

sponse is not degraded.

System with Reduced Gain

The first attempt to satisfy the above design specification is sim-

ply to reduce the controller gains, Kp, KI, and KD in Figure 2-2, by 50

percent. This is obviously not a complete solution, since the system

wind response is increased. It has been suggested that this gain reduc-

tion will give an acceptable radar noise response, and for this reason

this system will be used here for comparison purposes. However, the wind

response for this case will probably be excessive, and thus is not accept-

able. It is then assumed that this system does give an acceptable radar

noise response, and an unacceptable wind response. The study of the sys-

tem with full gains, i.e., the SPN-42 system, gives an unacceptable radar

noise response and an acceptable wind response.

The system with full gains will be referred to as the a-e system,

and the system with the gains reduced by 50 percent will be referred to

as the half-gain system. Thus the redesign problem is to design a system

that approaches the noise response of the half-gain system while approach-

ing the wind response of the a-B system. Of course, adequate stability

margins must also be maintained in the redesign.

2-6



YDOT System

A second variation on the a-$ system that is useful to study, but

cannot be implemented because of hardware constraints, is the system of

Figure 2-3. This system will be referred to as the ydot system. In

this system it is assumed that the aircraft velocity '(t) is measured

directly on the aircraft, and is then transmitted to the ground-based

controller. Thus the differentiation of a noisy signal in the PID con-

troller is no longer required, and this leads to a reduced noise response.

For the ydot system of Figure 2-3, it is seen that the following

transfer functions apply.

Y(s) Y(S) (Kp+KI/s)G 1 (s)Ycom(S) rn 1 + (Kp+KI/s+KDs)GI(S) (2-7)

Y( ) 2(G2 ()s)
W =- 1 + (KP+KI/s+KDs)GI(S) (2-8)

A comparison of (2-7) for this system to (2-1) for the a-a system indi-

cates that the bandwidth of the system from the radar noise input to

position output has been reduced. Furthermore, comparing (2-8) to (2-2)

for the a-a system shows that the wind response is the same for the two

systems. Thus the ydot system appears to achieve the design objectives,

and as will be shown later, does in fact achieve the design objectives.
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III. OBSERVER CONTROL SYSTEM

A possible improvement in the MATCALS closed-loop system is to re-

place the a-a filter in Figure 2-1 with a different filter. The purpose

of the a-s filter is to produce a filtered aircraft position and velocity

signal, y(k) and y respectively, based on the radar data. An observer,

or state estimator, is a different type of filter that can be used to

produce estimates of the states of the aircraft. Observer theory is

covered in detail in El], and will not be presented here. The observer-

based MATCALS lateral control system is shown in Figure 3-1. This system

will be referred to as the observer system.

Note in Figure 3-1 that the observer has as inputs the radar data

YR(k) and the controller output (k). The observer outputs are the es-

tirn-ted aircraft position y(k) [il(k) in the observer equations below]

and estimated aircraft velocity [i2 (k)]. Thus there is an additional

loop in the observer system that does not appear in the a-a system, which

should lead to increased flexibility. The observer designed for the F4J

lateral control system will now be presented.

Observer Design

The observer designed for the F4J lateral control system is based

on a third-order approximation to the ninth-order model for the aircraft

system in Figure 3-1 [1]. This discrete model is given by

3-1
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[ x(k+l)' 1.0 0.1 0.004771161 Fx (k) 00001142371

x (k+l) = 0.0 1.0 0.0932144 x() + 000338736 (k)

y(k) [ (1.0 0.0 0.0] xI(k)

x2 (k) (3-2)

x3 (k)

In these equations, xl(k) = y(k) [aircraft position], x2(k) = 5(k) [air-

craft velocity], and x3 (k) = y(k) [aircraft acceleration]. These equa-

tions are of the general form

x(k+l) = Ax(k) + B4(k) (3-3)

y(k) = Cx(k)

The equations of the observer are given by

j(k+l) = (A-LC)i(k) + Be(k) + Ly(k) (3-4)

where the matrices A, B, and C are given in (3-3), (3-1), and (3-2). The

matrix L is determined by the design procedure. To determine L, the

characteristic equation of the observer, denoted by a(z), must be chosen.

Then, from (3-4),

a(z) = IzI - (A-LC)I = 0 (3-5)

The only unknown in (3-5) is L, and Ackermann's Formula [1] may be used

to solve (3-5) for L.

For the observer designed in [1], a(z) was chosen as

a(z) = (z-0.8) 3  (3-6)

which resulted in

1* 3-3



0.467428

L = 10.57863 f (3-7)

10.03531 45J
Since z = csT =-T/r where T is the root time constant, then roots at

z = 0.8 in (3-6) result in a time constant for the observer of

r-.l/T = 0.8

or

= 0.448 seconds

since T is 0.1 seconds.

In order to determine the effects of the choice of a(z) on the lat-

eral control system of Figure 3-1, observers were also designed for

a(z) = (z-0.85)3  (3-8)

and

c(z) = (z-0.75)3  (3-9)

The observer time constant for (3-8) is then 0.615 seconds, and for (3-9),

0.348 seconds. The results of this design are tabulated in Table 3-1.

A comparison of the responses of these three observer systems to the

three systems described in Chapter II will be given in the next chapter.

3-4
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TABLE 3-1

Observer Matrices

,Q(z) (z-.85) 3  (z-.8) 3  (z-.75)3

p0.317429 047280672

L254144 0.57863 [1.04757

00060367 0.0353145 1 L0.186368
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IV. COMPARISON OF SYSTEMS

In this chapter a comparison is made of the radar noise responses

and the wind responses of the F4J lateral control system for the six dif-

ferent control configurations described in Chapters II and III. The con-

figurations are:

1. a-s system.

2. half-gain system.

3. ydot system.

4. (z-0.85)3 observer system (characteristic equation).

5. (z-O.8)3 observer system.

6. (z-0.75)3 observer system.

Recall that the (z-0.85)3 observer is the slowest one (i.e., narrowest

bandwidth) and the (z-0.75)3 observer is the fastest one (broadest band-

width).

Initial Condition Response

The first comparison of the systems is between the initial condition

f responses. All responses discussed in this report were obtained from the

simulation given in [l].

For the initial condition responses, the radar noise signal and the

wind input were set to zero. The initial aircraft displacement y(O) was

set to twenty feet at a range of 13,223 feet, which required a flight

time to touchdown of sixty seconds. The results are given in Figures

4-1 and 4-2.J 4-1
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In Figure 4-1 only the (z-.85)3 observer system response is plotted;

the responses of the other two observer systems lie between the (z-.85)
3

observer system response and the a-$ system response. The ydot system

response is much slower than the a-a system response, since the ydot sys-

tem bandwidth is reduced as shown by (2-7). The half-gain system response

is also slower than the a-a system response, because of the reduced sys-

tem bandwidth.

Conclusions: the observer systems do not degrade the system time

response to the extent of those of the ydot and half-gain systems. How-

ever, the time response of the half-gain system may be adequate; this is

not known.

Stability Margins

An important measurement of the relative stability of a closed-loop

system is the stability margins, i.e., the gain margin and the phase mar-

gin.

The gain margins and the phase margins of the six systems are given

in Table 4-1. Recall from Figure 3-1 that the observer system contains

two loops; thus the stability margins must be calculated for the system

opened in each loop. A property of observer systems is that stability

margins do not change in the primary loop, which in Figure 3-1 is the

system opened at (k). However, stability margins may degrade when opened

at the input to the plant, which in Figure 3-1 is the signal 0(t).

Note in Table 4-1 that stability margins for the observer systems

opened at O(k) are different from those of the a-B system. This differ-

ence originates in the use of a third-order model of the aircraft system

to design the observers.

4-4



TABLE 4-1

Stability Margins-Opened at (k)

system phase margin gain margin

a8 490 15 dB

half-gain 420 21 dB

ydot 490 15 dB

(z-0.85) 3550 11.2 dB

(Z-0.8)3  550 11.7 dB

(z-0.75) 3  550 12.0 dB

Opened at (t)

(z08)430 10.5 dB

(Z-0.8)3  450 12 dB

Uz-0.75)3  480 13.4 dB

I 4-5



Conclusions: it appears that the stability margins of all systems

are adequate, since the half-gain system has the smallest phase margin.

Note that the stability margins improve as the observe speed-of-response

increases.

Closed-loop Noise Frequency Response

Shown in Figure 4-3 are the closed-loop frequency responses Y/Yrn

for the six systems. The signal Y is the aircraft position, and Yrn is

the radar noise signal. Note that the bandwidth of the a-a system is

the broadest, and the ydot system has the narrowest bandwidth.

Conclusions: The bandwidths of the observer systems are somewhat

smaller than that of the a-a system, with the (z-.85)3 observer (the

slowest one) having the narrowest bandwidth. Thus this observer system

should have the least response to radar noise, when compared to the

other two observer systems and the a-8 system. The bandwidth of the ydot

system is approximately one-third that of the a-a system. The bandwidth

of the half-gain system is approximately one-half that of the a-B system.

Closed-loop Wind Frequency Response

Given in Figure 4-4 is the closed-loop frequency response Y/W, where

Y is the aircraft position and W is the wind input. The frequency re-

sponse for the ydot system is approximately the same as that of the :-a

system and could not be plotted as a separate curve. This result is ex-

pected, as explained in Chapter 2.

Conclusions: The a-a system frequency response is acceptable, and

that of the half-gain system is not. The observer systems frequency

response falls between these two, with the (z-.75)3 observer system

4-6
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(the fastest) closest to the acceptable a-B system response Tis result

is expected, since the fastest observer system has the broadest open-loop

bandwidth, and this is the requirement for the least response to wind.

Closed-loop Bank Command Frequency Response

The frequency responses Y/Yrn given in Figure 4-3 would be an accu-

rate indication of system radar noise response if the system were linear.

However, the effects of the nonlinearities in the aircraft do not appear

on the frequency-response plots. Perhaps a better indication of the ef-

fects of radar noise on the system response is given in the frequency

response D/Y rn' where i is the bank command and Y rn is the radar noise

signal. The high frequency signals in cD are filtered out before reaching

Y, the aircraft position. However, these signals can cause both the

rudder and the ailerons servos to reach the mechanical limits of travel.

This limiting is a nonlinear effect.

Shown in Figure 4-5 are the frequency responses for five of the six

systems. The ydot system is not included here. Note that the frequency

responses of the observer systems are considerably less than that of the

a-B system, but much greater than that of the half-gain system.

Conclusions: If the mechanical limiting of the travel of the rudder

and the ailerons is a problem, then the observer systems should perform

better than the a-B system with respect to radar noise response.

Monte Carlo Simulation Results

The Monte Carlo simulation discussed in El] was used to determine

actual time responses to radar noise and to wind. The wind model used

was simply white noise; thus the use of a more realistic wind model may

4-9
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change the results somewhat. The radar noise model used was that given

in [3]. Twenty simulations were run for each Monte Carlo test, and the

results given are the statistical averages of these twenty runs.

Given in Table 4-2 is the root-mean-square values of aircraft posi-

tion in feet, with radar noise and no wind. The aircraft flight began

at a range of 13,223 feet (60 seconds flight time to touchdown) with the

aircraft on the extended centerline of the runway; i.e., y(O) = 0. Thus

all motion of the aircraft is due to the radar noise, and hence is unde-

sirable. The a-a system exhibits the largest motion, the ydot system

the smallest. The observer systems' motions are greater than that of the

half-gain system, but considerably less than that of the a-B system.

Table 4-3 gives the root-mean-square values of the bank command for

the same simulations. Note that the data follows the same trends as that

in Table 4-2.

Table 4-4 gives additional data from the same Monte Carlo simulation.

This table gives the percentage of time that the rudder and the ailerons

are limited. Note that limiting does not occur for the ydot system, and

very little for the (z-0.85)3 observer system. The limiting is practi-

cally the same for the half-gain system and the (z-0.8)3 observer system.

Extensive limiting occurs in the a-$ system.

Table 4-5 gives results for the same initial conditions on the air-

craft, except for this simulation the radar noise signal is set to zero

and the wind input is white noise as given in [1]. Note that the L-0

system exhibits the smallest motion to wind, while the half-gain system

exhibits the largest. The observer systems' motion falls between these

values.
4-11
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TABLE 4-2

Radar Noise Response-Position Y

rms aircraft % above

system position, feet half-gain system

aS2.52 77

half-gain 1.42 0

ydot 1.09

(Z-0.85) 3  1.61 13

(z-0.8)3  1.68 18

(z-0.75) 3  1.97 39

4-12
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TABLE 4-3

Radar Noise Response-Bank Comnand o

rms bank % above

system command-degrees half-gain system

a-B 3.00 104

half-gain 1.47 0

ydot 0.17 -

(z-0.85)3  1.60 9%

(z-0.8)3  2.23 52%

(z-0.75)3  2.70 84%

4
I
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TABLE 4-4

Per Cent Time Limited

aileron rudder

system limiting, % limiting, %

c-8 23 42

half-gain 2 16

ydot 0 0

(z-0.85)3  0 1

(z-0.8)3  2 15

(z-0.75)3  9 30

4
I
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TABLE 4-5

Wind Response-Position Y

mns aircraft %above
system position-feet ci-a system

aa1.90 0

half-gain 3.35 82

ydot 2.02 6

(z-0.85) 3  2.36 24

(Z-0.8) 3  2.16 14

Uz-0.75) 3  2.05 8

F 4-15



Conclusions: The (z-0.75)3 observer system exhibits exces i.'e mot )n

to radar noise, and the (z-0.85)3 observer system exhibits excessive mo-

tion to wind. The radar-noise motion of the (z-O.8)3 observer system ap-

proaches that of the half-gain system; the wind motion of this observer

system approaches that of the a-6 system. In addition, the initial-con-

dition response of the (z-0.8)3 observer system approaches that of the

a-B system.

I
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V. MODEL 2 SYSTEM

In Chapter 4 an extensive comparison was made between six different

systems. A different system was used to make the actual closed-loop

landings, and this system is called the model 2 system in [3]. This sys-

tem differs significantly from the a-a system and the half-gain system

given in Chapter 2, and will now be described.

The block diagram of the a-B filter-controller of the a-8 system is

shown in Figure 5-1. The gains G, G2, G3 and G4 have the standard termi-

nology given in Table 5-1. The differences in the a-6 system parameters

and the model 2 system parameters are given in Table 5-2. Note that setting

the parameter al to unity gives that a filter in Figure 5-1 a gain of unity;

i.e., that a filter is removed. Note that the model 2 gains in the deriva-

tive path and in the acceleration path have been reduced from those of the

a-a system. Thus we expect the model 2 system to have a better radar noise

response, but a degraded wind response, when compared to the a-a system.

However, the low-frequency gain of the model 2 system is unchanged from that

of the a-$ system.

In the following developments, the model 2 system will be compared to an

observer system. However, in this chapter, the observer system will have the

same controller parameters as the model 2 system; i.e., the observer system

is the same as the model 2 system, except that the a-s filter in the model

2 system is replaced with an observer. Three observers will once again be

33
considered, with characteristic equations of either (z-0.85) , or (z-O.8)3

5-1
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TABLE 5-1

Gains of Figure 5-1

K4L*KCL

G TIL

G = KIL*KCL

G3  K K2L*TRL

G = K3L*TAL

TABLE 5-2

Controller Parameters
(T = 0.1 seconds)

a-$ system a- system
parameter of Chapter 2 model 2

KCL 0.1 0.1

TIL 30.0 30.0

TRL 7.5 6.0

TAL 7.5 2.5

0.3174 1.0

.2 0.234 0.234

a3 0.234 0.234

a 4 0.1211 0.1211

0.15 0.51

0.1746 0.1746
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or z-0.75)

Initial Condition Response

First the initial condition responses will be compared. For the

comparison, both the radar noise input and the wind input have been set

to zero.

The initial condition responses are given in Figure 5-2. The initial

aircraft displacement y(O) was set to twenty feet at a range of 13,223

feet, which required a flight time to touchdown of sixty seconds. The

response of the (z-0.75)3 observer is not plotted, since it is very close

to that of the model 2 system.

Conclusions: The (z-0.75)3 and the (z-O.8)3 observer systems degrade

the initial-condition response only slightly. Noticeable degradation

occurs in the (z-0.85)3 observer syst, . Recall that the (z-0.35)3 obser-

ver is the slowest one.

Stability Margins

The gain margins and the phase margins of the four systems are given

in Table 5-3. The description of the system opened at different points

is given in Chapter 4.

Conclusions: The phase margins of the observer systems opened at 4(t)

are somewhat small, but those of the (z-O.8) 3 and the (z-0.75)3 observer

are close to that of the model 2 system opened at t(k).

Closed-loop Noise Frequency Response

Shown in Figure 5-3 are the closed-loop frequency responses Y/Yrn'

5-4
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TABLE 5-3

Stability Margins

Opened at (k)

system phase margin gain margin

model 2 370 20 dB

(Z-0.85) 3  41 0 17 dB

(Z-0.8) 3  410 17 dB

(z-0.75) 3  410 18 dB

Opened at p(t)

(z-0.85)3  320 12 dB

(z-0.8) 3  350 15 dB

(z-0.75)3  37 0 18 dB
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where Y is the aircraft position and Yrn is the radar noise signal (see

Figure 2-2). The frequency response of the (z-0.75)3 observer system

is not plotted, since it is quite close to that of the model 2 system.

Conclusions: The observer systems' noise responses degrade from that

of the model 2 system, with the slowest observer having the narrowest

bandwidth.

Closed-loop Wind Frequency Response

Given in Figure 5-4 is the closed-loop frequency response Y/W, where

Y is the aircraft position and W is the wind input.

Conclusions: Since low wind response depends on a wide open-loop

bandwidth, we expect the (z-0.85)3 observer (slowest) to have the greatest

wind response. This is seen to be true. The (z-0.75)3 wind response is

very close to that of the model 2 system, and is not plotted.

Closed-loop Bank Command Frequency Response I
Given in Figure 5-5 are the frequency responses t/Y ' where is

rn
the bank command and Y rn is the radar noise signal. The importance of

this frequency response is discussed in Chapter 4.

Conclusions: The observer systems show significant improvement in

the system gain from radar noise to bank command. Thus the ailerons and

rudder should exhibit less motion in the observer systems.

Monte Carlo Simulation Results

The Monte Carlo simulation is discussed in [1] and in Chapter 4.

Given in Table 5-4 are the root-mean-square values of several signals obtained

5-8
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from Monte Carlo simulations with radar-noise input. The column l&,e&ed

y is the rms value of position, 0 is the ms value of bank command, 6 a is

the rms aileron angle, a is the rms aileron velocity, 6r is the rms

rudder angle, and 6r the rms rudder velocity. Also given are the per cent

of time that the aileron servo and the rudder servo are limited. Note

that the observer systems show significantly less response to radar noise

than does the model 2 system.

In terms of radar-noise response, replacing the c-s filter with an

observer significantly improves response. For example, the (z-0.8)3 ob-

server has less than one-half the aileron displacement and velocity as does

the model 2 system. In addition, the aileron servo limiting for this

observer system is almost zero, compared to 13.3% of the time for the model

2 system. Figure 5-6 shows a typical aileron response to radar noise for

the model 2 system and for the (z-0.8)3 observer system. The flight time

runs from 30 to 46 seconds, or for a range from approximately 6600 feet to f
3000 feet. Note that the aileron motion for the observer system is signifi-

cantly less than that for the model 2 system.

Table 5-5 gives results from Monte Carlo simulations with the radar

noise removed and the wind input as given in [l]. Note that the model 2

system exhibits the least response to wind, but that the observer systems'

responses are not significantly greater. Also given is a comparison to

the wind response of the a-s system of Chapter 4.

Conclusions: The observer systems exhibit a significantly improved

radar-noise response when compared to the model 2 systems, but the wind

response is somewhat degraded. Thus, if an observer is employed in the

system, probably the controller gains can be increased to reduce wind response

while maintaining a reasonable radar-noise response.
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TABLE 5-3

WAind Res;onse-?ostirfl I

rns a4-craft above aDove

S j tem position-feet model 2 system - _s,*,

model 2 2.24 01 8,

(Z-0.85) 3  2.64 18'. 39'

cz-0.6) 3  27.46 0%291,

(z-0.75) 3  2.38 61. 25%
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VI. CONCLUSIONS

The F4J ai-rcraft lateral control system in a MATCALS configuration is

investigated in this report. Several different controllers are utilized

in these studit to determine which yield the best radar-noise response

and which yield the best wind response.

The proposed MATCALS systems contain an a-s filter in the controller.

Alternative systems are constructed by replacing the a-B filter with an

observer.

In general the observer control systems exhibit significantly less

radar-noise response than do the a-a systems, but exhibit somewhat more

wind response. These studies indicate that the observer controllers im-

prove the MATCALS system's operation when compared to the a-B controllers,

and that the observer systems should be considered further.

6-1

I



REFERENCES

[1] E. R. Graf, C. L. Phillips, and S. A. Starks, "Marine Air Traffic
Control and Landing System (MATCALS) Investigation", Contract
l-A-2550 (subcontracted from N-00039-80-C-0032), Auburn University,
Auburn University, AL, April, 1981.

[2] Charles L. Phillips, Edward R. Graf, and H. Troy Nagle, Jr., "Marine
Air Traffic Control and Landing System Error and Stability Analysis",
Vol. 1 and 2, Contract N00228-75-C-7080, Auburn University, Auburn
University, AL, 1975.

[3] "MATCALS-AN/TPN-22 Mode 1 Final Report" ITT Gilfillan Technical Re-
port, prepared for Naval Electronics Systems Command, Contract
N0003-75-C-0021, August, 1979.

I
I



I
PART F)UR

I
THE DESIGN OF A TRI-STATE ADAPTIVE TRACKING

FILTER FOR THE MATCALS SYSTEM

Prepared for

Georgia Institute of Technology
ATLANTA, GEORGIA

Under

Contract 1-A-2550

by

Electrical Engineering Department
Auburn University
Auburn, Alabama

Prepared by: Creeley M. Lee, Jr.

Reviewed by: Scott A. Starks



I
I
I

ITHE DESIGN OF A TRI-STATE ADAPTIVE TRACKING

FILTER FOR THE MATCALS SYSTEM

ABSTRACT

A tri-state adaptive tracking filter is designed for use in the

F4J aircraft lateral control system in an automatic landing configuration.

The system presently uses an alpha-beta tracking filter to estimate the

aircraft's lateral position and velocity. The tri-state adaptive filter

is designed to replace the alpha-beta filter. Results from the F4J lat-

eral control system simulation indicates that the tri-state adaptive fil-

ter improves the system's response.
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I. INTRODUCTION

This study investigates the possible use of a tri-state adaptive

tracking filter in an automatic landing system for aircraft. The auto-

matic landing system under consideration is the Marine Air Traffic Con-

trol and Landing System (MATCALS). Presently the MATCALS control system

uses an alpha-beta filter to estimate the aircraft's position and velo-

city. The performance of this system is greatly degraded by the amount

of noise present in the system. The tri-state adaptive tracking filter

is presented as a possible replacement for the alpha-beta filter. The

performance of the tri-state adaptive filter was ealuated using the

simulation of the F4J aircraft lateral control system.

A general discussion of the alpha filter, the alpha-beta filter,

and the alpha-beta-gamma filter is given in Chapter II. This discussion

includes derivations, stability analysis, and noise response evaluation

for each filter. The tri-state adaptive filter, which is composed of

the three filters discussed in Chapter II, is presented in Chapter III.

The selection of the appropriate filter output is governed by the vari-

ance of the filters' smoothed position estimates.

A general description of the MATCALS F4J Lateral Control System

Simulation is given in Chapter IV. Chapter V presents the results of

the F4J lateral control system simulation using the tri-state adaptive

filter in place of the alpha-beta filter.I
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II. THE COMPONENT FILTERS

Introduction

When using radar track-while-scan systems to track a moving air-

craft, radar returns in the form of raw digitized position measurements

must be processed to provide

1) a smoothed estimate of present position;

2) a smoothed estimate of present velocity;

3) a one step ahead prediction of position for track

correlation or bin selection.

In the design of these tracking systems, two conflicting require-

ments must be met. The first reauirer.;ent is that the system must have

good noise smoothing properties. A system of this type is typically

characterized by a sluggish system response, long time constant and nar-

row bandwidth. The second requirement is that the system must have fast

maneuver following capabilities. This type of system is usually charac-

terized by a fast system response, short time constant, and wide band-

width. The first requirement is essential because of the inherent noise

present in the raw unprocessed radar position measurements. On the

other hand, in tracking airborne targets, the dynamics of the tracking

system must be capable of tracking an object that is not stationary in

space. As a result, the second requirement is necessary. Unfortunately,

as one makes the tracking system more insensitive to noise, the maneuver-

following capabilities suffer. Thus, some compromise is always required.

2
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However, the smoothing equations should be structured so as to give the

best compromise. That is, noise smoothing should be maximum for a given

maneuver following capability and vice-versa.

The smoothing of the position and velocity estimates is usually ac-

complished with a digital filter. These filters can range in complexity

from a simple two point extrapolator to the comparatively complex Kalman

filter [I]. This section examines the alpha filter [2], alpha-beta

filter [3], and the alpha-beta-gamma filter [4]. Although the Kalman

filter is more sophisticated and more accurate than the filters being ex-

amined in this section, it is, computationally, the most costly to imple-

ment. The principle advantage of the alpha, alpha-beta, and alpha-beta-

gamma filters versus the Kalman filter is that the computations require

no matrix inversions as does the Kalman filter, which results in faster

filter outputs and less data storage.

Throughout this discussion, only a single dimensional filter will

be considered. The variable x may denote the aircraft's position in

azimuth, elevation, or range. By assuming smoothing in any given coor-,

dinate can be handled independently, extension to multiple coordinate

systems is straightforward.

The Alpha Tracking Filter

Derivation of the Alpha Filter

The first tracking filter to be examined is the alpha tracker.

The alpha tracker is founded upon the fundamental theorem of exponential

smoothing. The fundamental theorem states that, given a time series

j (X(t)} with observations at equally spaced intervals, the first N+l de-

grees of exponential smoothing can be combined, using the binomial

.. -- I
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coefficients, to give an estimate of the values of the coefficients of an

Nth degree polynomial model of the observations to date, evaluated at the

time of the most recent observation [2]. The alpha tracker takes the

form of the simplest first degree of exponential smoothing and can be ex-

pressed as

xs(k) Xm(k) + (l-a) Xs(k-l) (2-1)

where,

x (k) = smoothed estimate at time kT

xm(k) = input measurement of position at time kT

a = position smoothing constant. 0 < a < 1

Suppose that the observations of position to date give an estimate

of x s(k-l) and a new observation x M(k) is received at time kT. If the

new value is larger than the old estimate, the new estimate x s(k) will be

larger, and conversely.

The alpha tracker is derived from the zero order "window" tracker

[5]. Assume that there exists a series of regularly spaced samples of

position which must be smoothed.

Xm(k), xm(k-l), xm(k-2), ... , Xm(l), xm (0) (2-2)

such that

xm(k) = x(k) + n(k)

where

Xm(k) = input measurement of position at time kT

x(k) = actual value (constant) of position at time kT



5
n(k) = measurement noise

At this point in the discussion, the noise is assumed to be Gaussian,

zero mean, with variance = an2. The noise is also assumed to be uncor-

related from sample to sample and therefore independent from sample to

sample.

If x(k) equals some constant X, then the "window tracker" with a

smoothing interval of L samples might be utilized to "average out" the

effects of the random noise variations on xm(k) such that the estimate

is approximately equal to the actual value X. This may be accomplished

via equation (2-3).

L

xs(L) = 1 L xm(k) (2-3)s L k=l m

Now, if the approach of minimizing mean-square error between x s(L)

and x (k) is taken, the best least squares fit of a horizontal line to

the data is obtained.

L 2m i (xs (L) - XM(i))} : 0 (2-4)

Xs (L) I=1

L 2 L
SxsL (x X(L) -x : Z 2(x s(L) x Xm(i) 0

(2-5)

L L
2 x x (L) - 2 X(i) = 0 (2-6)

L L
E xs(L) XM(i) (2-7)
i=l11

I
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L
L x s(L) x m(i) (2-8)

il

L

x (L) 1 L M (2-9)
i=l

Therefore, the "window" tracker provides a smoothed position estimate

based upon the minimization of the mean-square error between x (L) and5

xm(k).

A one step ahead prediction of position may be obtained from the

"window" tracker by merely shifting the L-length window such that it

spans the measured data from x m(2) to x m(L+1). Equation (2-3) now takes

the form of

L+l
x (L+l) - 1 x (i) (2-10)
p L i=2 i

L+I 1x (L+) x M(i)) - Xm(l) (2-11)
1 L 1

S L I. xmin) - x (1) + L" X (L+1) (2-12)

xp(L+l) = xs(L) +I (x1(L+l) - xm(1)) (2-13)
p s L (x(+1

It is safe to assume that the smoothed estimate x s(L) is a more accurate

value of true position than the noise corrupted measurement xm(1).

Therefore, (2-13) becomes

xp(L+l) = xs(L) + 1 (xm(L+l) - x (L)) (2-14)

I SI L l Is
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rearranging terms

x (L+l) : x (L+l) + (1 - ) Xs(L) (2-15)
p L mL

By defining a = - then a familiar form of the alpha tracking filter is
L

obtained [6].

x p(k+l) = a Xm(k+l) + (1-a) xs (k) (2-16)

where x p(k+l) is the one step ahead prediction of position. By examining

(2-15), it is evident that as the length L of the smoothing window is

extended, a decreases, resulting in increased smoothing since the new

measurement data is not weighted as heavily as the previous estimates of

position. If it were known that the initial estimates of positions were

correct then there would be no point in using the measurement data as a

basis for prediction and the smoothing constant a would approach the

value of zero. If, on the other hand L is decreased, a increases in

value (approaching unity) such that the new measurement of position is

weighted more heavily, rapidly discounting the effects of the previous

estimates.

When (2-16) is substituted into itself for successively earlier

samples, a series emerges of the form

k+l
X p(k+l) = Z (I-a) n Xm(k+l-n) (2-17)

n=O

From (2-17) it is evident that the alpha tracker assigns geometrically

decreasing weights to the least recent data, hence the term exponential

smoothing.

i



Alpha-Filter Noise Response

The alpha tracker can be depicted as in Figure 2.1, where the im-

pulse response of the digital filter is defined by

h(k) 0 a (1-a) k  (2-18)

The output of the filter is a convolution of the input and the filter's

impulse response

xs(k) = h(k) * xm(k) (2-19)

Some idea of the noise smoothing performance of the alpha tracker may be

obtained by examining the mean and variance of x s(k). The convolution of

(2-19) may be written as

Xs(k) [a (1-a)n [X + n(k-n)]. (2-20)

n=O

where

,(I-) n = impulse response of alpha tracker

X = actual position of target

n(k) = additive zero mean Gaussian noise with

variance n 2

Taking the expected value of (2-20) yields the mean of the output

of the alpha tracker.

E{xs (k)) = E{a (I-)n [X + n(k-n)]} (2-21)
n=O

E{x s(k)} - a (1-a) n E{X + n(k-n)} (2-22)
n:O



x ( k) NOk a= -C x (k)

Figure 2.1. Block Diagram Representation of Alpha-Filter

Transfer Function.
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E{x s(k)} E a s (1-a) n E(X} + E{n(k-n)} (2-23)
n=O

Since X is a constant, E{X} = X. n(k) is zero mean, therefore E{n(k-n)}

= 0 and (2-23) becomes

E{xs (k)} a (I-)n X (2-24)
n=O

Using the identity, for Ial < 1,

W n 1
E a = 1a (2-25)

n=o

E{x (k)} = - X = X (2-26)

Thus the alpha tracker is capable of tracking a constant level of posi-

tion, corrupted by zero mean Gaussian noise, with no bias or offset.

The variance of the output estimate xs(k) is given by

21

var{x (k)} = E[a ( -) [X+n(k-n)] - E{x (k)}] (2-27)
n=O

From (2-26) E{x (k)} = X
5

so that

2

varfxs5(k)} = E{[a z l-~ (X+n(k-n) -X)] 2  (2-28)

n=O

varixsk)} = Ef[a Z (l-a) n n(k-n)] 2 1 (2-29)

n=O

var{xs(k)} = 2 E{[ E (-)n n(k-n)][ Z (l-a) j n(k-j)]} (2-30)
n=O j=0
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var{xs (k)} = a E (l-) (1-a) E{n(k-n) n(k-j)} (2-31)
n=O j-O

The noise n(k) is uncorrelated from sample to sample such that

E{n(k-n) n(k-j)} = 0 if i t j

E{n(k-n) n(k-j)} = a 2 if i =j

Therefore (2-31) is reduced to only one summation.

2 2nj 2
var{x (k)} 2 2 n (I a (2-32)

n=O n

k 1Using the identity E a = a again,
n=O

2
var{x (k)) = (2-33)

l -(l-a) 2

var{x (k)} = 2 (2-34)
s n

It is evident that as a decreases the noise response of the system, and

thus the variance in the output estimate, decreases.

Analysis of the Alpha Filter in

the Z-domain

By taking the z-transform [7] of equation (2-1) the alpha-tracker

may be examined in the z-domain,

xs(Z) (l-a)z -1 xs (Z) + X m(;) (2-35)

I
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Rearranging terms yields the z-transform of the alpha-tracker [6].

H(z) ) s (2-36)m -(l-a)z " I

The alpha-tracker is seen to have a pole located at

z = 1-L (2-37)

Since a tracking system with stable dynamics is required, a must be se-

lected such that the system pole lies within the unit circle. The locus

of possible pole locations within the unit circle is shown in Figure 2.2.

By examining Figure 2.2 it is evident that a must fall within the range

of 0 < a < 1 for stable operation. Selecting a too close to 1 causes the

weighting sequence of the alpha-tracker to rapidly approach zero. Such a

selection yields a system with fast response to transients. Selecting a

close to 0 results in a sluggish system response (more smoothing) and a

decreased response to noise. The zero of the alpha-tracker is located at

z = 0 (2-38)

and thus weights the entire frequency response of the system equally.

The alpha-tracker, though simple to implement, is limited in its

ability to track a moving target. The limited tracking ability of the

alpha-tracker becomes evident when x s(k) is examined as a function of

X m(k) for different target trajectories.

The case of constant position, zero velocity will first be exam-

ined. This case might be analogous to the azimuth or elevation tracking

of an aircraft moving radially with respect to the radar.

Xm(k) X (2-39)
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Applying the z transform,

Xm(Z) = Xz (2-40)

H(z) z (2-41)

Therefore

, Xz ___z_ cXz
XZ z- l z-(l-c) a(z-l)(z-('-a)) (2-42)

By utilizing the partial function expansion method,

(z) Xz - (l-a)xz (2-43)

Finally,

x s(k) = X - (7-a)(I-a) kx (2-44)

xs(k) X - (1-a)k+l X (2-45)

where

X = actual signal

X(l-a)k+l = bias or amount of lag

As k increases, the bias rapidly approaches zero and the output equals

the constant position input X.

The alpha-tracker does not perform as well when a constant velocity

input is applied to the system. This can be verified by making Xm(k) a

sampled ramp function.

x m(k) = Vk (2-46)

- - . . . , i I i I Im



15

X m(Z) = (zl2 (2-47)
m (z-l)2

Therefore,

x(z): aVZ 2  (2-48)
(z-l) (Z-_O-c))

After applying the partial fraction expansion,

X (k) = Vk - V [1-(0-a) k]  (2-49)

where,

Vk = actual signal

V-a) [ 1-(l-)k] = bias

Unlike before, as k increases, the bias does not approach zero such that

xs(k) = Vk - V(l-a) (2-50)
S a

From (2-49) the inability of the alpha-tracker to track, with zero bias,

any signal other than a constant amplitude signal with random noise vari-

ations is established.

The Alpha-Beta Tracking Filter

Derivation of the Alpha-Beta Filter

The inability of the alpha-tracker to track without bias a target

whose position is changing with respect to time suggests that a more

generalized model for target trajectory should be investigated. The

new model should account for the target's change in position via a con-

stant velocity term such that the new model for target trajectory is

!
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x(k) = x(k-1) + vT (2-51)

where

x(k) = actual position at time kT

x(k-l) = actual position at time (k-l)T

v = velocity (constant)

T = time between samples

To track a target following a trajectory as prescribed in (2-51),

both smoothed estimates of position and velocity are required. Fron [3]

one method to obtain smoothed estimates of position and velocity is to

define a tracking system such that

xs(k) = gx(O)xm(k) + gx(l)xm(k-I) + ,.. (2-52)

and

s(k) = gk(O)xm (k) + g (l)xm(k-1) + ... (2-53)

where

xm(k) = noise corrupted position measurement at time nT

(xm(k) = x(k) + n)

xs(k) = smoothed estimate of position at time kT

Xs M)= smoothed estimate of velocity at time kT

gx(k) = the input position to output position weighting

sequence or unit-impulse response

g (k) = the input position to output velocity weighting

sequence or unit-impulse response
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Smoothed estimates of position and velocity may also be obtained by

defining a set of recursive equations of the form

xs(k) = y1 xs(k-1) + Y2 xs(k-2) + ... + YN xs(k-N)

+ 60 xm(k) + 61 xm(k-1) + ... + 6m X(k-m) (2-54)

is(k) = n1 Xs(k-l) + n2 Xs(k-2) + .. + nN Xs(k-N)

+ XO Xm (k) + x Xm(k-1) + ... + xm xm (k-m) (2-55)

Equations (2-54) and (2-55) are termed Nth order (since Yk and nk = 0 for

k > N+l) and at least N storage locations in a computer are required to

compute these estimates. Equations (2-54) and (2-55) may be combined to

form a set of second order difference equations known as the alpha-beta

tracking filter [8].

X skM = x p(k) + a(X mkW - x p(kQ) (2-56)

xs(k) = xs(k-1) + /T (x (k) - x (k) ) (2-57)

x p(k+l) Xs(k) + T Xs(k) (2-58)

Xp(k+l) : X(k) (2-59)
p

where

Xm(k) = noise corrupted position measurement at time kT

xs(k) = smoothed estimate of position at time kT

xs(k) : smoothed estimate of velocity at time kT

x (k+l) = one step ahead prediction of position at time
P

j (k+l )T

r
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p(k+l) = one step ahead prediction of velocity at time

(k+l)T

a = position smoothing constant

= velocity smoothing constant

T = time between samples

Successive corrections are made to the smoothed values of position

and velocity proportional to the differences between the measured posi-

tion xm(k) and the previous predicted estimate of position x p(k). As

time progresses from the interval (k-l)T < t < kT to the next interval,

kT < t < (k+l)T, x s(k) is increased by the amount a[xm(k) - x p(k)], and

the velocity s(k) is increased by the amount [x m(k) - x p(k)]. Examin-

ing (2-56) through (2-59) it is apparent that the value of a and a deter-

mine the degree of smoothing between measured and predicted values of

position to yield the smoothed estimate of position. If a and a approach

unity, then the measured values of position are weighted more heavily

than the predicted values of position. Such a system is characterized

by wide bandwidth resulting in very little smoothing of the incoming po-

sitional data. Conversely, if a and a approach zero then the predicted

values of position are weighted more heavily than the measured values

effectively narrowing the bandwidth of the system and resulting in in-

creased data smoothing. The predictor equations are based upon the as-

sumption that the target aircraft will maintain a constant velocity

trajectory throughout the tracking procedure.
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Analysis of the Alpha-Beta Filter
in the Z-Domain

-The predictor equ&tion (2-56) can be modeled'as a sampled

data feedback system in which tne error 6efined by e (t) = xI(t) -

Xp (t), is converted to a train of impulses,

e*(t) =_ z (kI) 6(t-kT) (2-60)
x kX

This train is applied to a single and double integrator combination whose

impulse response is the sum of a step function of height a and a ramp of

slope B/T. The block diagram is shown in Figure 2.3.

The transfer function of the single and double integrator combina-

tion may be expressed via its Laplace transform as

G(S) + B (2-61)
p S Ts

The transformation of the continuous error e x(t) into the impulse train

e (t) is indicated by the sampling switch.

In the z-domain, the transfer function of the predictor can be ex-

pressed as

G p(z) = E [(a+Bk)zk ] - a , (2-62)

k=O

which sums to the following closed form [9],

G (Z) = (a+B)z - aZ (2-63)
p (1-z 1 )2

By manipulation of (2-63), the predictor transfer function can be found

to be
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x (z) (a+)z - a (2-64)

H3(z) 7 z2 + (B+a-2)z + (1-a)

In a similar manner, the transfer functions for smoothed position and

smoothed velocity may be found to be

Ss(z) z(z-l) (2-65)
H2(z) T X T z2 + (B+a-2)z + (1-a)

X s(z) z[az + a -a] (2-66)
H1(z) X (z) 2 (-6m z + (a+a-2)z + (1-a)

Note that the three transfer functions have the same characteristic

equation and the poles of the transfer functions can be found solving

for the roots of,

z2 + ( +a-2)z + (1-a) = 0 (2-67)

By applying the quadratic formula, the roots of the characteristic equa-

tion are seen to occur at

2-a-a + ] (2 2 /2
22a8-40) (2-68)

Stability of the Alpha-Beta Filter

Since a stable tracking system is desired, the values for a and B

must be selected such that the system poles lie within the unit circle of

the z-plane. One method of determining the values of a and a for stabil-

ity is to apply the Jury stability test [10]. The Jury stability test

is a stability criterion for sampled data systems that is similar to

the Routh-Hurwitz criterion [11]. Applying the Jury criterion to (2-67),

the Jury array obtained is

I
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0 1 2
z z z (2-69)

(i-a) (a+8-2) 1

The necessary and sufficient conditions for the second order characteris-

tic equation (2-67) to have no roots on or outside the unit circle are as

follows:

Condition 1: F(l) > 0

Condition 2: (-l)2 F(-I) > 0

Condition 3: ja0  < a2  (2-70)

Condition 1: + (a+a-2)z + (l-a) > 0

(1)2 + (a+B-2)(1) + (I-a) > 0

Condition 2: (-l)2 [z2 + (a+a-2)z + (l-a)] > 0

1 + 2-a+a + 1-a > 0
2a+a < 4

Condition 3: lao1 < a2

where,

a0 = 1-a

a2 =1

11-al < I

therefore

C. > 0.
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An additional stable condition exists when B 0, since in that case the

zero of the denominators of equations (2-64) through (2-66) at z = 1 is

cancelled by one of the zeroes of the numerators. The resulting require-

ments for stability are

a> 0

8>0

2a + 8 > 4 (2-71)

Alpha-Beta Filter Noise Response

Some insight into the noise smoothing performance of the alpha-beta

filter may be obtained by examining the mean and variance of the smoothed

position estimate x s(k). Utilizing the partial fraction expansion method

to inverse transform equation (2-66), the impulse response for the

smoothed position output of the alpha-beta filter is,

a a _a - EL2 _ 1 2 2 1I/2]k

[+ - 2(B2+ 2 2+2a-4) 1/2] 2  2 , +a8-4s I

(2-72)

Assuming a constant velocity target, the input to the filter is given by:

xm (k) X + vkT + n(k) (2-73)

where,

X = actual position of target aircraft

v = actual velocity of target aircraft

2n(k) = additive zero mean Gaussian noise with variance = a
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T sampling interval

The smoothed position estimate x s(k) is given by the convolution of the

impulse response hI(k) and the input Xm (k).

xs (k) = E hI(n) xm(k-n) (2-74)
n=O

From (2-72) the impulse response may be expressed as

h1(k) = Cl[B1]k + C2[B2]k (2-75)

where,
2

-a _ +

1  2 2 ( 2+a2 +2c-4 )l/2

2
-a 2 +23

2 - 2 ( 2+a2+2a-4) 1/2

B-- 1az + ( p2+,2 +2as_4 )I/2
B- 2 2

B= 2-a-B 1 2 212
B2 2 - y (6 +a +a-s

Substituting (2-75) and (2-73) for hI(k) and x m(k) respectively, the

smoothed position estimate is given by

xs (k) = z [CI(BI)n + C2(B 2 )n][X + vkT + n(k-n)] (2-76)
n=O

The mean of x s(k) may be found by taking the expected value of (2-76)

E{x s(k)} = E{ z [C1 (B1 )n + C2(B2 )n][X + vkT + n(k-n)]) (2-77)
n=O
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E{x s(k)} = s [Cl(BI)n + C2(B 2 )n] E{[X + vkT + n(k-n)]}

n=0 
(2-78)

E{x S(k)} = E [C1 (B I )n + C2 (B2 )n][E{X} + E{vkT} + E{n(k-n)1]

n=O 
(2-79)

Since X and v are deterministic, and n(k) is zero mean,

E{X} = X

E{vkT) = vkT

E{n(k-n)} = 0

such that (2-79) becomes

E{x s(k)} = E [C1 (Bl )n + C2 (B2 )n][X + vkT] (2-80)
n=O

E{x s(k)) = [X + vkT] [CI(Bn1  + C2 ( 2 )n] (2-81)
n=O

Using the identity E ak= 1
n= 0

E{x (k)} = [X + vkT] I+ (2-82)

After extensive algebraic manipulation, it can be shown that the mean of

the smoothed position estimates is

E{x s(k)) = X + vkT (2-83).

The result shown in (2-83) implies that, given a constant velocity target

trajectory, the -noothed position estimate x s(k) is unbiased.
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In a similar manner, the variance of the smoothed position estimate

may be calculated.

var{xs (k)} E{[[ CI(B 1)n + C2 (B2 )n][X + vkT + n(k-n)
n=O

- E{x s(k)]] 2  (2-84)

From (2-83)

E{x s(k)} = X + vkT

so that (2-84) becomes

var{x s(k)} = E([ (C1(B1 )n + C2 (B2 )n)n(k-n)]
2 } (2-85)

n=O

var{xs (k)} = E{[C1  s (B1)nn(k-n) + C2  (B2 )nn(k-n)]
n=O n=O

[Cl Z (Bl)Jn(k-j) + C2  (B )Jn(k-j)] }  (2-86)j=o j~o 2)

w)n + n[,B)j
var{x s(k)} = E r [Ci(81 C2 (B 2)n[ Bn=O j=O

+ C2(B2 )j] E{n(k-n)n(k-j)} (2-87)

The noise is uncorrelated from sample to sample, therefore

E{n(k-n) n(k-j)1 = 0 if i~j

E{n(k-n) n(k-j)} = a if i~j

Now (2-87) is reduced to a single sum

var{xs (k = 2 [CI (B l)n + C2 ()n]
2  2 (2-88)

n=O
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2 n) )n +C 2ni 02

var{xs (k)} [C (B )2n + 2CLC2(BI (B2) + C(B2) 2 n
n=O

(2-89)

Since (B1 )n(B2)n = (BIB 2)n and a = 1 a (2-89) becomes
n12 1-a'

var{x (k)) = 2 + 2C1C2  + C2
2  On (2-90)

I-B1 (BI B2) I-B2
2

With considerable algebraic manipulation, it can be shown [3] that

variance of the smoothed position estimate is

var{x (k)} [2a 2 + (2-3a 1 2L (4- -2a J n (2-91)

If the variance in the smoothed position is expressed as

var{x s(k)} = K x(O)an 2  (2-92)

then Kx (0) is known as the variance reduction ratio [9]. If Kx (0) is

less than one then the tracking system has reduced the effect of noise

on the output signal. If Kx (0) is greater than one, the system has ac-

centuated the noise. The variance reduction ratio is superior for values

of a and B approaching zero.

Performance Measures for the

Alpha-Beta Filter

Benedict and Border [3] introduced two performance measures in

order to assess properly the attributes of noise reduction and transient

performance and derive an optimal relation between a and a.

For noise smoothing, the performance measures are the aforemen-

tioned variance reduction ratio in position output defined by:
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K x(0) = steady-state variance in position output

variance in raw position input (2-93)

and the variance reduction ratio in velocity output defined by:

K.(O) = steady-state variance in velocity output

variance in raw position input (2-94)

For transient performance the performance measures are

Dx= [(unit-increment ramp)-(position ramp response)]2

n=O
(2-95)

and

Di2 = [(velocity of unit-increment ramp)
n=O

- (velocity ramp response)] 2  (2-96)

If the impulse responses of both the smoothed position output (previously

derived in this paper) and the smoothed velocity output are obtained,

then the performance measures for the alpha-beta tracker is found to

be [3],

Kx (0) = 2a2 + B(2-3al (2-97)a[4-a-2a

I 2B 2

Kk(O) T .[4-2.-a] (2-98)

D2 I2"1 (la)2

D = c2[4--2cI] (2-99)

2 = 1 2(2-) + 2(1-a) (2-100)
x T-2 a[4-B-2 ]-
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Based upon these performance measures, Benedict and Bordner [3]

utilized the calculus of variations to optimally select the values of a

and a so as to minimize respectively Dx2 and D.2 for a given Kx (0) and

K.(O), and vice versa. The relationship between a and a which results

in the optimal tracker is given by

2
2 (2-101)

The recursive nature of the alpha-beta filter equations allows them

to be incorporated easily intc a computer algorithm which performs the

filtering process. A flowchart for implementing the alpha-beta filter on

a computer is given in Figure 2.4.

The Alpha-Beta-Gamma Tracking Filter

Derivation of the Alpha-Beta-
Ganma Tracking Filter

The alpha-beta tracking filter previously discussed is best suited

for a target under track which has constant velocity. For the case of

an aircraft experiencing a great deal of maneuvering, changes in velocity

between sample intervals are often significant. As a result, the ability

of the alpha-beta filter to track an accelerating target is severely

hindered. The degradation in performance which occurs when an alpha-beta

filter tracks an accelerating target, suggests that a tracking filter

which includes an acceleration estimate might be appropriate for a ma-

neuvering aircraft. The model for the accelerating target trajectory is

therefore chosen as

x(k) = x(k-l) + vT + aT2 (2-102)
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x s(k-i) 0j

s (k-i) 0

x (k) x (k-1) + Ti (k)

ip(k sk1

x (M - x (k) + ax (k)-x (k)]
s p m p

s(k) -= (k) + s/T[x n (k)-x (k))

Figure 2.4. Flowchart of the Alpha-Beta Tracking Filter.
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where,

x(k) = actual target position at time kT

x(k-l) = actual target position at time (k-l)T

v = velocity of target

a = acceleration of target (constant)

T = time between samples

In order to accurately track a target following a trajectory such

as prescribed in (2-102), smoothed estimates of position, velocity and

acceleration must be available. Simpson [4] defines a system of

weighting sequences in order to obtain the smoothed estimates of posi-

tion, velocity, and acceleration. These are:

Xc(k) = E gx (n) Xm(k-n) (2-103)
n=O

i (k) E E g(n) Xm(k-n )  (2-104)s n=0O

Xs(k) E g..(n) Xm(k-n )  , (2-105)
n=0

where

xm(k) = noise corrupted position measurement at time kT

(Xm(k) = x(k) +n).

xs(k) = smoothed estimate of position at time kT

Xs(k) = smoothe -,timdte of velocity at time kT

s (k) = smoother timate of acceleration at time kT

gx (n) = the input position to output position weighting

sequence, or unit-impulse response of the system

I
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g,(n) = the input position to output velocity weighting

sequence, or unit-impulse response of the system

g.(n) = the input position to output acceleration weighting

sequence, or unit-impulse response of the system

Alternately, a corresponding sampled data system can be character-

ized by a set of recursive equations such as

xs (k) = p1 xs(k-l) + P2 xs(k-2) + "" PN xs(k-N)

+ 60 xm(k) + 61 xm(k-l) + + 6m Xm(k-m) (2-106)

s(k)  = n Xs(k -1)  + n2  s
(k -2 )  + .. + nN  ks(k-N)

+ X0 xm(k) + x1 xm(k-l) + ... + xm xm(k'm) (2-107)

s(k ) = 1 X*s(k-l) + n2 X's(k-2) + ... + iN X s (k-N)

+ 0 xm(k) + £l Xm(k-1) + ... Em xm(k-ri) (2-108)

When such recursive equations terminate (i.e., Pk = nk = 11k : 0 for

k > N+I), the equations are termed Nth order.

Equations (2-106) through (2-108) may be combined to form a set of

third order difference equations which define the alpha-beta-gamma track-

ing filter [4]. These are given as

xs (k) :x p(k) + a(xm(k) - x p(k)) (2-109)

Xs(k) : ip(k) + (1/T) (xm(k) - x p(k)) (2-10)

X '(k) S (k-l) + (y/T2 ) (xm(k) - x p(k)) (2-111)

x p(k) = xs(k-1) + T s (k-l) (2-112)

pI
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p (k) : is(k-1) + T is(k-l) (2-113)

where

xm(k) = noise corrupted position measurement at time kT

xs(k) = smoothed estimate of position at time kT

s(k)= smoothed estimate of velocity at time kT

's (k) = smoothed estimate of acceleration at time kT

x (k) = one-step ahead prediction of position at time kTP

(k) = one-step ahead prediction of velocity at time kT
p

L position smoothing constant

a velocity smoothing constant

= acceleration smoothing constant

T time between samples

The alpha-beta-gamma tracking filter is a third order filter which

can track a constant acceleration target with a trajectory as prescribed

in (2-102) with zero steady-state error. The similarities between the

alpha-beta filter and the alpha-beta-gamma filter are obvious when

equations (2-109) through (2-113) are compared to those for the alpha-

beta filter. While a and perform the same function as they did in the

alpha-beta filter, the y term provides the much needed acceleration esti-

mate essential for accurately tracking a maneuvering target. This more

generalized tracking filter not only maintains track throughout maneuvers

or turbulent conditions, but in addition, provides smoothed estimates of

position, velocity, and acceleration with very little increase in com-

putational effort.

[.
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The Alpha-Beta-Gamma Filter
in the Z-Domain

The properties of the alpha-beta-gamma tracking filter may be more

effectively studied in the Z-domain. Taking the Z-transform of equations

(2-109) through (2-113) and using the right shifting property results in

X p(Z) = z-  X s(Z) + T z-I  s(Z) (2-114)

ip
k(Z) = z- 1iks (z; + T z- I  * s(Z) (2-115)

Xs (Z) = (l-) x p(Z) + a xm(Z) (2-116)

(Z) = p (z) + ( /T) xm(z) - (a/T) xp(Z) (2-117)

s) p mp(Z

i s(Z) = z-  's(z) + (y/T2) xm(z) - (y/T2 ) Xp(z) (2-118)

In the alpha-beta-gamma tracker, there is one input to the system,

xm(k), and five output signals xp(k), Xp (k), xs(k), is(k), and * s(k).

Therefore, there must exist five separate transfer functions relating

xm(z) to xp (z), Xp (z), xs(z), s (z), and * s . These transfer functions

may be obtained by dividing each side of equations (2-114) through (2-118)

by x (z) to yield

x (z) -1 xs(z) -1s(Z)
H1(z) -IT z +T z (2-119)

m m m_(Z) -1 is(Z) z - I X (2-20
H2,(,) :X- :z xm---- + T z Xm2120

H(Z) s(Z) (1 -) x (z) x (z) (2121)
3 Z - XZ7m (2-121)

I I II
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S(z) x(z) (61T) x m(z) (,,/T)x (z)

H4(z) ' + (Z) -122)Xm~ Z7xz
4 (z ) inTZ in x iz(

Ss(z) -1 X '(z) + (y/T2) xm(Z) (y/T2) x p(z)
H5 (z) x ( z x m (z Xm(Z )

(2-123)

After incorporating the transfer function relationships

x (z) (z) x (Z)
H(Z) : X H2 (z) X H3 (z)

H S (z) H X' s(Z)

4(Z Xm-T , 5(z) =

and rearranging terms, the set of five equations becomes

H1lz) - Z H 3(z) - T z-1 H4 (z) = 0 (2-124)

H2 (z) - z-1 H4 (z) - T z- 1 H5(z) = 0 (2-125)

(l-a) HI(z) - H3 (z) = -a (2-126)

(B/T) H (z) - H2 (z) + H4 (z) = B/T (2-127)

2 2

(y/T2) H1(Z) + (1-z - l ) if5 (z) = y/T (2-128)

The transfer functions, Hi(z), now have the rational form Ni(z)/D(z).

The general determinant D(z) is given by

I
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1, 0, -z -TZ - 1  0

0, 1, 0, -Z -  , -TZ I

(1-a) 0, -1, 0, 0 (2-129)

WT), -1, 0, 1, 0

(y/T 2 ), 0, 0, 0, (I-Z - )

which upon evaluation yields [12]

D(z) = (-z) -3 [z +(a+6-3)z 2 + (3+y-2a-a)z + (a-i)] (2-130)

By using the theory of determinants [12] and performing considerable

algebra, the transfer functions for the smoothed output variables are

[12],

H X( s(Z) az- + (B-2a)z 2  + (a+6-y)z (-131)
H3(z) ) - Z3 + (a+e-3)z 2 + (3+-y-2a-q)z + (,-1)

H - -S(Z) I 1 3  + (y-26)z2 + (B--Y) (2-132)
: "'z- + (a+a-3)z + (3+y-2a-a)z + (a-1)

() (Z) z3 -2z2 + z

5( x M T2  z3 + (a+ -3)z2 + (3+y-2a- )z + (a-1)

(2-133)

These transfer functions have the same denominator polynomial and

therefore have the same set of poles. Observing the transfer function

solutions for the alpha-beta filter outputs x s(z) (2-56) and s (z) (2-57),

it is interesting co note that the solutions (2-131) through (2-132) do

not reduce to those of the simpler alpha-beta filter solutions for y = 0.

This can also be seen from the original difference equation statements of

both systems. The alpha-beta-gamma filter can be reduced to behave as
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the alpha-beta filter in practice by letting y = 0 and requiring the

boundary condition ( s(0) = 0. The point to be made here is that the

alpha-beta-gamma filter is not merely a simple extension of the alpha-

beta filter.

Stability of the Alpha-Beta-

Gamma Filter

A stable tracking system requires that a bounded filter input pro-

duces a bounded filter output. In the Z plane, this strictly means that

the poles of the characteristic equation lie within the unit circle.

There are many tests for stability but the Jury stability criterion

[10] will be applied here as it was for the alpha-beta filter. First,

the denominator of the transfer function is written as

F(z) = (l-x) + (3 -2a-a+y)z + (a+ -3)z2 + (1)z3  (2-134)

where

F(z) = a0 + a z
1 + a2z 2 + a3z

3

From (2-134) the Jury array obtained is

z1 23
z z z (2-135)

(a-l) (3-2a-+y) " (a+ -3) (-)-(21

The requirement that F(z) has all of its roots within the unit

rircle is satisfied by the conditions:

Condition 1: F(l) > 0

Condition 2: (-l) 3 F(-l) > 0

Condition 3: la - a2

Condition 4: b0  > !b2 !

I



where

a 0  a m-k

bk:

am ak m=3

Condition 1: + (u+ -3)z 2 + (3+y-2c-2)z i (c-1) > 0

(1)3 + (a+8-3) (1)2 + (3+-,-2,-3)(1 ) + (a-I) > 0

1 + a + - 3 + 3 + a - 2 - + c- 2 > 0

a > 0 (2-136)

Condition 2: z 3 + (a+a-3)z 2 + (3+y-2t-B)z + (a-)f I  > 0

(_I) 3 + (a+ -3)(-l) 2 + (3+y-2a- )(-1) + (a-l) > 0

-1 + a + - 3 - 3 - y + 2 a + B + a - 1 > 0

4o, + U - y - 8 > 0

4 a + 2B -Y > 8

2 4 > (2-137)

Condition 3: laol <a 2 '

where,

a0

a = l-

a 2 =

0. , (2-38)
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Condition 4: lbo1 > lb2 1,

where,

a0  a3

b0 = = (12-_) -1 a -2a

a3  a0

a0  a1

b2 = = (a-1)(a+o-3) - (3-2a-O+y)(l)

a3  a2

b2 = a + a - 2a + y

therefore,

ja 2-2a. > ja 2+as-2a+yl

as > y (2-139)

since 0 < a < 2

ai>n0 (2-140)

The relations just presented are necessary and sufficient for the poles

of the characteristic equation to lie within the unit circle. These

relations are very useful when manipulating a, s, and y in designing a

j filter to satisfy a particular set of specifications.

I
I
I

.-. _________________'_-____.,._.
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Pole Analysis for the Alpha-
Beta-Gamena Tracking Filter

When one of the equations (2-116) through (2-118) are solved to

obtain one of the outputs x out(z), the output will be of the rational

form [9]

N1

R (z-wi)
xo(z) = = (2-141)o~ut(Z : : N2 M.

H (z-p i ) 1
i=l

where mi is the multiplicity of the ith pole, wi is the ith zero of the

system and pi is the ith pole of the system. The partial fraction ex-

pansion and inversion will yield the general form [9]

xout(nT) = A0 (Pi,w i) + F glk(k, Pip wi)(P1 )ko t0 k=l

+ Z g2k(k, Pi' wi)(P 2)k I
k=l

+"

mN2
+ E gN2(k, Pi' wi)(PN )k(2

All the terms, except A0 decay as the power of a given pole or root of

the denominator where fpil < 1. The g coefficients may contain

powers of k which offset this decay, but the structure of (2-142) pro-

vides an approach to alter the response of the filter by choosing the

A * ~ .
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poles and then obtaining the required a, s, and y. Thus given the poles

of the characteristic equation and defining

Do(Z) = z 3 + (ct+s-3)z 2 + (3+y-2a-B)z + (a-1)

= (z-pl)(z-p2 )(z-p 3 ) , (2-143)

4t can be shown that [12),

P E a + B - 3 -(p1 + P2 
+ P3) (2-144)

Q B 3 + y - 2 - = P2 + p2P3 + plP 3  (2-145)

R =- a - 1 = -plP2P 3  (2-146)

Conversely the poles may be derived by knowing a, 0, y and solving

the cubic equation Do(Z) = 0. If

D0 (Z) = z
3 + Pz2 + Qz + R , (2-147)

then from [13],

a - (3Q- p2) (2-148)

27 p3(2p3 
- 9PQ + 27R) (2-149)

b 2 + a 3(2-1 50)

1/3
A - + G] (2-151

i 1/3

ab _ G] / (2-152)

E A + B (2-153)

[
.r---~
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and the poles are,

P1 = E- " P/3 (2-155)

P2, 3 = E2, 3 - P/3 (2-156)

Alpha-Beta-Gamma Filter Noise Response

Singer and Behnke [14] have shown that an alpha-beta filter has

a noise response which is less than 20% worse than that of a Kalman fil-

ter for smoothed estimates of position and velocity. The second order

comparison suggests that the alpha-beta-gamma filter will perform in a

similar manner when compared with a third order Kalman filter.

Once again the variance reduction ratios Kx (0), K.(O), and K..(O)

are introduced to evaluate the noise throughput of the tracking system.

Simpson £4] defines the noise performance measures as

K (0) = z gx2 (k) (2-157)X k=O

1 2(k
K;((O)k= 2 k () (2-158)

X T k= 0

K .(O) = 1 gi. 2 k) .(2-159)
T k=O

Wilcox [12) provides an algorithmic approach to the calculation of the

noise performance of the alpha-beta-gamma filter, assuming a zero mean

Gaussian measurement noise with variance= an .

___ __ __ _
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For the calculation of K (0), letx

b0 = a, b I = -
2a, b2 

= +Y-6, b3 =0

a0 = 1, a, = a+a-3, a2 = 3+y-2a-o, a3 = a-'

For the calculation of K.(O), let the ai's remain the same and

b= ( /T), bI 
= -  bT ' 2 = T 3 = 0

For the calculation of K.(0), let the ai's remain the same and

b0 b2 = (y/T 2 ), bI = (-2y/T 2), b3 = 0

Now defining

Kx (0) = K1(0), %(0) = K 2(O)' K.(O) = 3(0),

then the noise response for each estimate is calculated by substituting

the appropriate values of ai and bi into

K.(0) a 0Bo0 - a0BiQ + a0B2Q2 - B3Q 3  (2-160)I a0 [(a0 2-a3 2)Qo - (aoa1 -a 2a3)Q l + (a0 a2 -a1 a3 )Q2

where

BO 0 bo2 + b12 + b2
2 + b3

2

B1 = 2(b0b1 + b1b2 + b2 b3 )

B2 = 2(b0b2 + b1b3 )

B3 = 2bob3I
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El = a 0 + a2

E2 : aI + a3

Q= a0E1  a 3 E2

Q- a0a1 - a 2 a 3

Q2 
= alE 2  a2EI

Q3 = (a1-a 3 )(E 2 2-E 1 ) + ao (aoE2 -a 3 E1 )

It can be shown that as a, $, and y approach zero the poles of the

characteristic equation approach one, which results in higher noise sup-

pression since the bandwidth decreases and the effective data smoothing

capability of the filt; r increases.

Performance Measures for the

Alpha-Beta-Gamma Filter .

Simpson [4] and Neal [15] define two transient performance mea-

sures for the transient analysis of the alpha-beta-gamma filter. The I
first transient performance measure is the unit-increment ramp response

used earlier in the analysis of the alpha-beta tracker,

Dx2 z [(unit-increment ramp) - (position ramp response)12n=O

(2-161) A

Di= [(velocity of unit-increment ramp)

n=O

- (velocity ramp response)]2 (2-162)
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D.= E [(acceleration of unit ramp response (=0))
x n=0

- (acceleration ramp response)] , (2-163)

thus,

x E [n. gx(J)(n-j)] 2  (2-164)
n=O j=0

Di [ 1 - gj(j)(n-j)] (2-165)
n=O j=0

2 n 2 (2-166)

Di- E [- z g..(j)(n-j)) (
n=O j=O

Similarly the transient performance measure (A ) due to a unit step in-

put of acceleration is defined, in the same manner, as the sum of the

squares of the errors arising from this input. Therefore,

A n2 2 1 (2-167)
n_0 j= X

2 1 1 2 2 (2168)Ai 2 . n-ro(xnj 218IT n=0 n=0

2 = n g2. 2 2 (2-169)
S T n0 j=O

By numerical evaluation of these performance measures, Simpson

[4] derived an optimal relation between a, a, and y such that for a

given noise smoothing, the optimal transient response is achieved, and

vice versa.

2= - (a + Y) 0 (2-170)

2, 

-
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In a later paper, Neal [151 verified Simpson's relation analyt-

ically using a new approach [1] to linear estimation theory and also

derived an additional relation between a, a, y.

2 = 2 ay (2-171)

The preceding relations (2-170) and (2-171) provide a method of opti-

mally choosing two of the parameters of the alpha-beta-gamma tracking

filter thus simplifying the task of optimizing the tracker in a given

tracking environment.

The recursive nature of the alpha-beta-gamma filter makes it a

prime candidate for implementation on a digital computer. A flowchart

of the alpha-beta-gamma filter is given in Figure 2.5.

I

!

I

I

I
I

I
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C START

SINITIALIZE a, s, XI D y

x s(k-1) 0

is (k-) 0

s (k-I) - 0

xp(k) " xs(k-1) + T s(k)

ip(k) is(k-1) + TW*'(k-1)

(k) + 2(x (k)-x (k)]

Ss(k) - X p (k) + 8/T[xm(k)-xp(k) )

" (k) " (k-1) + y/T2[x (k)-x ( k)

I Figure 2.5. Flowchart of the Alpha-Beta-Gama Tracking Filter.

I



III. THE TRI-STATE ADAPTIVE FILTER

Introduction

Three different tracking filters have been discussed in the pre-

vious chapter for implementation in a track-while-scan radar system.

These trackers are capable of providing optimum estimates of an air-

craft's position provided the dynamical models on which the tracking al-

gorithm are based, are accurate assumptions of the aircraft's true tra-

jectory. Unfortunately, due to the presence of radar measurement noise

and wind turbulence, no single dynamical model for the aircraft's tra-

jectory will be an accurate model throughout the period that the air-

craft is under track.

Tracking Filter Limitations

Although the alpha filter is the simplest tracker that has been

discussed, it provides the greatest noise smoothing performance. It is

based upon the assumption that the aircraft's position is not changing

with respect to time. The constant position model is applicable to the

azimuth or elevation tracking of an aircraft whose trajectory is radial

to the radar. The alpha filter is capable of tracking a constant posi-

tion target with less error than either the alpha-beta filter or the

alpha-beta-gamma filter, but because the alpha filter assumes a zero

target velocity, its ability to track a target undergoing a change in

position is impaired.

48
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The alpha-beta tracker is a second order tracking filter which is

designed to minimize the mean-square error in filtered position and ve-

locity, assuming no velocity change between data samples. Thus the alpha-

beta filter's capability to track severely maneuvering (accelerating)

targets is severely limited.

If the target is assumed to be maneuvering, its trajectory may be

modeled by a constant acceleration model with time varying position and

and velocity. This more generalized model of the target's trajectory

leads to the third order alpha-beta-garnia tracker which is capable of

providing good estimates of the target's position and velocity through-

out a maneuver. If, however, the target is not maneuvering, the alpha-

beta-gamma filter suffers a significant degradation in noise smoothing

performance compared to the simpler alpha-beta tracker (for constant

velocity traj,-tory) or alpha tracker (for constant position trajectory).

Selection of the Appropriate Filter

Since the state of the target's trajectory may change as a func-

tion of time and range, no single filter will provide accurate estimates

of the target's position and velocity throughout the tracking interval.

However, if a bank of three filters consisting of the alpha filter, the

alpha-beta filter, and the alpha-beta-gamma filter were operated in par-

allel with one another, accurate estimates of the target's position and

velocity would be available regardless of the changes in the target's

trajectory. Some type of adaptivity should be built into the filter bank

so that if no position change is detected then the estimate from the

alpha tracker, should be selected. If the target is ascertained to have

a constant velocity, then the estimate from the alpha-beta tracking

!
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filter should be selected. And if the target is undergoing a change in

velocity, then the estimate from the alpha-beta-gamma tracker, should

be selected.

Detection of a change in the target's trajectory and the selection

of the appropriate filter output may be accomplished by monitoring the

variance in the smoothed position estimates of both the alpha filter and

the alpha-beta filter.

Alpha Filter Output Variance as a

Basis for Filter Selection

If a constant position measurement of the form

xm(k) = X + n(k) (3-1)

where

xm(k) = radar position measurement at time kT

X = actual position at time kT (constant)
2

n(k) = zero mean Gaussian noise with variance n 2

is the input to an alpha tracker, then from equation (2-34) the variance

in the smoothed position estimate is given by

232
var{x5 (k)} ~- " ,un (3-2)

2 .
The input noise variance an is usually available, and if not, it can be

easily calculated. The variance in the smoothed position estimates of

the alpha filter can be approximated directly from the filter's output

by



I S

51

varx(k)} 1 L 2vat s Q Z [X s(i) EX s (k)}] (3-3)
i=O

where,
xs(i) = ith estimate of smoothed position

L the integral number of samples over which the

variance in smoothed position is being calculated

L

E{Xs(k)} = L E xs(i)i=O

As long as constant position measurements of the form prescribed

in equation (3-1), are input to the alpha tracker, then the variance in

the smoothed position estimates, approximated by equation (3-3), will

remain less than or equal to the variance calculated via equation (3-2).

If, however, radar measurements of a target undergoing a change in posi-

tion are input to the alpha tracker, the variance in the smoothed posi-

tion estimates, approximated by equation (3-3), will exceed the expected

variance calculated via equation (3-2). Thus the variance in smoothed

position obtained from equation (3-2) may be used as a threshold to

determine if the alpha filter is capable of tracking the target. If the

variance in the smoothed position estimates, approximated by equation

(3-3), is less than the variance threshold calculated via equation (3-2),

then the alpha tracker's smoothed estimate of position is considered the

best estimate of the target's position and the velocity of the target is

assumed to be zero. If the variance of the alpha tracker's smoothed po-

sition estimates, approximated by equation (3-3), exceeds the variance

threshold obtained from equation (3-2), then the alpha tracker's smoothed

I
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estimate of position is rejected and the alpha-beta filter's smoothed es-

timates of position and velocity are examined to determine if they yield

a more accurate representation of the target's trajectory. When the

variance of the alpha tracker's smoothed output (3-3) drops below the

variance threshold (3-2), then the alpha filter's smoothed position es--

timate is once again considered a valid estimate of the target's position.

Alpha-Beta Filter Output Variance

as a Basis for Filter Selection

In a similar manner, if the radar measurement of a constant velo-

city target is input to an alpha-beta filter it has the form of

Xm(k) = x(k) + vkT + n(k) , (3-4)

where,

xm(k) = radar position measurement at time kT I
x(k) = actual position at time kT

v z velocity of target (constant)

T = sampling interval

Assuming an input as prescribed in (3-4), the variance expected in the

smoothed position estimate is

2a2 + S(2-.3o)1 2

var{xs(k)} = 4-)-2) Jn (3-5)

Equation (3-5) is of course, based upon the previous relation given by }

equation (2-91).

As with the alpha filter, the variance in the smoothed position

estimates of the alpha-beta filter can be approximated from the filter's

smoothed output by equation (3-3).
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As long as the target miaintains a constant-velocity straight-line

trajectory, the variance in the alpha-beta filter's smoothed estimates

of position (3-3) will remain less than or equal to the expected vari-

ance in smoothed position calculated via equation (3-5). Since the

alpha-filter's estimate of position has been previously examined and

found to be inaccurate for a constant-velocity target trajectory, it is

assumed that the alpha-beta filter's smoothed estimates of position and

velocity best represent the true trajectory of the target.

If the target undergoes an acceleration, the variance in the alpha-

beta filter's smoothed position estimates, approximated by equation (3-3),

will exceed the variance threshold calculated in equation (3-6). Under

this condition, the alpha-beta filter's smoothed estimates of position

and velocity are deemed inaccurate and tracking control is transferred

to the higher order alpha-beta-gamma filter. Estimates of smoothed posi-

tion and smoothed velocity from the alpha-beta-gamma filter are used only

as long as the variances in the smoothed position estimates of the alpha

filter or alpha-beta filter exceed their variance thresholds, calcu-

lated via equations (3-2) and (3-5), respectively. If the variances in

the smoothed position estimates of both the alpha filter and the alpha-

beta filter drop below their respective variance thresholds during the

same sample interval, then track control is transferred to the alpha fil-

ter since it provides a greater degree of noise smoothing than the other

f two filters. A block diagram depicting the tracking system discussed in

the previous paragraphs is shown in Figure 3.1.!
!
I



54

CC La

w 17~

U.U
U. am
1L

S-



55

Implementation of the Tri-State Adaptive
Tracking Filter

Examination of Figure 3.1 shows that the alpha, alpha-beta, and

alpha-beta-gamma tracking filters operate in parallel. Each filter gen-

erates its own estimates of smoothed position and smoothed velocity

based upon its implicit model of the target's trajectory. The smoothed

position estimates from the alpha filter and the alpha-beta filter are

stored in separate L-length shift registers. From the stored values of

the alpha filter's smoothed position estimates, the variance in the alpha

filter's smoothed position estimates is calculated via equation (3-3).

In a similar manner the variance in the alpha-beta filter's smoothed

position is calculated using the stored values of the alpha-beta filter's

smoothed position estimates. The calculated variances in the alpha fil-

ter and alpha-beta filter smoothed position estimates are then compared

to their respective variance thresholds (calculated via (3-2) and (3-5)).

The appropriate filter output is then selected based upon the criteria

previously discussed. At the next sample interval, the new smoothed

position estimates are shifted into the shift registers and the variance

in smoothed position is recalculated for each of the two filters.

A flowchart depicting the operation of the tri-state adaptive

tracking algorithm is presented in Figure 3.2.

The implementation of the tri-state adaptive tracking filter, as a

FORTRAN IV subroutine, is given in the Appendix. The subroutine per-

forms azimuth tracking on an incoming aircraft. The inputs to the sub-

routine are the sampling interval T, the azimuth noise variance, the

range of the aircraft at each sample interval, and the radar's measure-

ment of lateral position in feet.

r
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IV. SYSTEM SIMULATION

Introduction

This study investigates the application of a tri-state adaptive

filter in an automatic landing system for aircraft. The automatic land-

ing system under consideration is the Marine Air Traffic Control and

Landing System (MATCALS). The MATCALS utilizes an AN/TPN-22 track-while-

scan, electronically steerable microwave radar to produce raw digitized

measurements of the aircraft's vertical and lateral positions. This po-

sitional information is filtered and processed by a groundbased control-

ler which calculates the appropriate bank and pitch commands to correct

the aircraft's trajectory. The commands are then transmitted via a com-

munication link to the aircraft's autopilot to automatically land the

aircraft. This configuration is presented in Figure 4.1. A more de-

tailed discussion of the MATCALS is available in [16).

FORTRAN IV programs have been written to simulate the F4J and A7E

aircraft dynamics, the F4J and A7E autopilots, the landing system con-

j troller, and the AN/TPN-22 radar. The FORTRAN IV program listings are

given in [16]. Each of the aircraft simulations consists of two parts -

Ithe lateral control system simulation and the longi udinal control system

I simulation. The two control systems are uncoupled are structurally

identical. The lateral control system of the F4J i be used to study

5
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the performance of the tri-state adaptive filter, since stability is

more difficult to obtain in this system than in the longitudinal control

system [17).

The F4J Control System

The lateral control system of the F4J automatic landing system is

modeled as a sampled data control system. The aircraft's lateral dynam-

ics and autopilot generate the analog signal y(t) (lateral position).

The AN/TPN-22 radar is modeled as an A/D converter, which converts the

continuous process y(t) into discrete measurements of position every T

seconds, where T, the sampling period, is selected to be 0.1 seconds.

The groundbased controller is modeled as a digital transfer function

which generates discrete bank commands, a(k), and a zero order hold

which restructures the discrete bank commands into the continuous sig-

nals 0(t). A block diagram of the lateral control system for the F4J

aircraft is given in Figure 4.2.

The F4J Lateral Guidance System

The F4J aircraft lateral dynamics are described by a set of sixth

order linear differential equations. The autopilot dynamics are given by

a set of third order differential equations. Thus, the lateral control

system is ninth order. In addition the lateral control system includes

three nonlinearities. The system equations are of the form

i(t) = A x(t) + Bu(t) + Ef(t) (4-1)

y(t) = CPx(t) + Du(t) (4-2)

I
I
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Figure 4.2. Block Diagram of the F4J Lateral Control System.
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where the nonlinearities are simulated by the term Ef. The simulation of

the F4j aircraft's lateral dynamics and the dynamics of the autopilot is

discussed in detail in Reference [16].

The SPN-42 Digital Controller

The groundbased control unit for the F4J lateral control system is

the SPN-42 digital controller. The SPN-42 is described as a PID control-

ler. In this notation, P indicates proportional, I indicates integral,

and D indicates derivative. The SPN-42 digital controller is composed of

an a-6 tracking filter, a differentiator, an integrator, four a filters,

and a floating limiter. A block diagram of the SPN-42 lateral control

system digital controller is presented in Figure 4.3, with all nonlinear-

ities omitted. A detailed description of the SPN-42 digital controller

is available in [17].

AN/TPN-22 Radar

The AN/TPN-22 phased array radar is utilized in the lateral control

system of the F4J aircraft to measure the lateral position of the air-

craft. In the measurement process a significant amount of noise is in-

troduced into the system such that the reported lateral position of the

aircraft is degraded. A model for simulating the noise associated with

the AN/TPN-22 radar is the ITT-Gilfillan AN/TPN-22 radar noise model

[18]. A block diagram of the radar noise simulation is given in Fig-

ure 4.4. The difference equation describing the AN/TPN-22 azimuth radar

noise is given by [17],

t(n) = 0.382 As(n-l) + 0.15 t4(n-2) + 0.122 L (n-3)

+ 0.0045 A (n-4) + v(n) (4-3)

I
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and,

measured angle (n) = LO(n) + g(n) + target angle , (4-4)

where,

A4(n) = azimuth noise at the nth sample

g(n) = azimuth granularity error sequence with standard

deviation, ag = 0.148 mr

v(n) = white noise sequence with mean = 0.0 and variance,

Ov = 0.320 mr
2

The dircraft's normal touchdown point on the runway is offset from the

radar center by:

Longitudinal X offset = 762.9 feet

Lateral Y offset = -178.1 feet

The target angle is given by:

target angle = tan- 1 V + 178I. (4-5)

[X + 762.9]

The lateral position of the aircraft, measured by the radar, is given by

YR(n) ( (X + 762.9) tan[measured angle (n)] - 178.1 (4-6)



V. SIMULATION RESULTS

Introduction

The feasibility of using the tri-state adaptive tracking filter in

the M4ATCALS may be studied by incorporating the tri-state adaptive filter

and the alpha-beta filter into the F4J lateral control system simulation

discussed in Chapter IV. The response of the F4 lateral control system,

using the alpha-beta filter to estimate the aircraft's position and ve-

locity, may then be compared to the control system's response using the

tri-state adaptive filter to estimate the aircraft's position and velo-

city. Block diagrams depicting the implementation of the alpha-beta

filter and the tri-state adaptive filter in the F4 lateral control sys-

tem are given in Figure 5-1 and 5-2, respectively.

For ease of reference, the lateral control system using the alpha-

beta filter to estimate the aircraft's position and velocity shall be

called the alpha-beta control system. Likewise, the lateral control

system using the tri-state adaptive filter to estimate the aircraft's

position and velocity shall be called the tri-state adaptive control

system.

Tracking System Comparison

Filter Parameters

The filter coefficients used to obtain the simulation results for

the alpha-beta control system and the tri-state adaptive control system

are given in Table 5-1. The filter coefficients for the alpha-beta
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control system were obtained from [17], and were found to provide the

optimal noise smoothing performance for a given maneuver following capa-

bility. For this reason, the alpha-beta stage of the tri-state adaptive

filter is identical to the filter used in the alpha-beta control system.

The filter coefficients for the alpha and alpha-beta-gamma stages of the

tri-state adaptive filter were determined experimentally by making re-

petitive simulavion runs and selecting the coefficients which provided

the best noise smoothing performance (alpha-filter) and the best maneu-

ver following capability (alpha-beta-gamma filter).

Filter Frequency Response

A FORTRAN program from [19] was used to calculate the amplitude

and phase responses of the alpha-beta filter and the three filters which

make up the tri-state adaptive filter. These frequency responses are

given in Figure 5-3 through Figure 5-6.

Control System Time Response with

a Given Initial Condition

The initial condition time responses of the alpha-beta control

system and the tri-state adaptive control system are given in Figure

5-7 and Figure 5-8.

The time responses of the two lateral control systems were ob-

tained from simulation runs of the eighty seconds of the aircraft's

flight prior to touchdown. This corresponds to an initial range of

17,632 feet. The aircraft is initially assumed to be offset laterally

from the extended centerline of the runway by twenty feet. The lateral

velocity of the aircraft is initially assumed to be zero while the

I.
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forward velocity of the aircraft is assumed to be a constant 220.39

feet per second. For the time response simulations, the wind and noise

disturbances were eliminated.

The time responses of the alpha-beta control system and the tri-

state adaptive control system may be evaluated by comparing the tran-

sient response of each system and the ability of each system to guide

the aircraft. The rise time and the time to peak provide a measure of

the transient responses of the lateral control systems. The rise time,

Tr, is defined as the time required for the aircraft to reach the ex-

tended centerline of the runway. The time to peak, Tp, is defined as

the time required for the aircraft to reach its first peak. An idea of

how well the lateral control systems guide the aircraft may be obtained

by examining the percent overshoot and the time to settle for each sys-

tem. The percent overshoot for the lateral control system is given by

po= peak x 100% (5-1)
XIC

where X is the magnitude of the first peak position of the aircraft,peak
and XIC is the magnitude of the initial position of the aircraft. The

time to settle is defined as the amount of time necessary for the con-

trol systems to settle the aircraft within 2% of its initial position of

twenty feet. These time response performance measures for the alpha-

beta control system and the tri-state adaptive control system are given

in Table 5-2.

I



TABLE 5-2

TIlE RESPONSE CHARACTERISTICS

ALPIIA-CETA TRI-STATE
FILTER CO:TROL ADAPTIVE

SYSTEMI C)'!TROL SYSTEI

TiN!E TO RISE, Tr 9.8 10.8
(seconds)

TIIIE TO PEAK, T 133 19.6

(seconds) ._-

TIME TO SETTLE, Ts 56 56
(seconds)

PERCENT OF OVERSHOOT, P.O.()36.75 32.3

(F
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The results given in Table 5-2 reveal that the alpha-beta control

system has a faster response than the tri-state adaptive control system,

but the tri-state adaptive control system does not overshoot as severely.

Tri-State Adaptive Control

System Performance

The performance of the tri-state adaptive tracking filter may best

be evaluated by comparing the results of a number of simulation runs of

the tri-state adaptive control system with the results of similar runs

of the alpha-beta control system. The characteristics of the system

responses cannot be obtained from one simulation. To obtain an accurate

statistical description, it is necessary to make many simulation runs

and to statistically average the results.

Monte Carlo Simulation Runs

One method of obtaining accurate statistical descriptions of the

two lateral control system responses is by making Monte Carlo runs. Each

of the Monte Carlo runs that are to be presented is determined from

twenty simulation runs. For each simulation run, the aircraft is ini-

tially assumed to be on the extended centerline of the runway at a

starting range of 17,632 feet. Prior to the start of each simulation

run, the aircraft is assumed to have zero lateral velocity, and a con-

stant forward velocity of 220.39 feet per second. The forward velocity

of 220.39 feet per second results in a flight time of eighty seconds to

touchdown point. All lateral movements of the aircraft during the sim-

ulation runs are caused by wind turbulence or radar noise. The wind

turbulence and radar noise for each of the twenty simulation runs have

the same statistical parameters; however, the random number generators
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in the wind turbulence and radar noise sources are started at different

values thus generating different number sequences for each simulation

run. It should be noted that each Monte Carlo run uses identical sets

of random number sequences.

For the purpose of analyzing the two control system responses as

a function of range, each simulation run is divided into four equal

time bins, each having a duration of twenty seconds. This corresponds

to four range bins, each having a length of 4408 feet.

Statistics are calculated to describe the system responses over

the appropriate range bin for each simulation run. The statistics for

each range bin are then averaged over the twenty simulation runs which

make up the Monte Carlo run. The results, as a function of rang(, for

the Monte Carlo runs with wind turbulence and radar noise included a.-e

given in Table 5-3. The statistics used to evaluate the alpha-beta con-

trol system and the tri-state adaptive control system are the mean

square lateral position error off the extended centerline of the runway

and the variance in position error off the extended centerline of the

runway. A listing of percent improvement of the tri-state adaptive

control system over the alpha-beta control system is included in the

Tables. Percent improvement is defined as

% Improvement : -MA-MT) x 100% (5-2)
TMA +M T)12]

where MA and M T are the mean square error of position off the extended

centerline of the runway for the alpha-beta control system and the tri-

state adaptive control system, respectively.I
1!
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Table 5-3 indicates that the tri-state adaptive control system

does not perform as well as the alpha-beta control system when radar

noise and wind turbulence is included in the simulation runs. Closer

scrutiny of Table 5-3 reveals that the tri-state adaptive control system

performs best only for bin I which corresponds to a range greater than

13,224 feet.

A possible reason for the inferior performance of the tri-state

adaptive control system may lie in the switching process between the

alpha and alpha-beta filter states of the tri-state adaptive filter.

As pointed out in Chapter III, the alpha filter will provide excellent

smoothing of position measurements so long as the lateral velocity of

the aircraft is equal to zero. If the aircraft acquires a lateral velo-

city, then the alpha filter estimate will be in error. In order to

determine if the aircraft is acquiring a lateral velocity, the variance

in the smoothed position estimates of the alpha filter state must be

calculated as given in equation (3-3). This variance in smoothed posi-

tion is then compared to the variance threshold for the alpha filter

given by equation (3-2). If the variance in the alpha filter's smoothed

position estimates exceeds the threshold then the aircraft is assumed

to have acquired a lateral velocity and the output of the alpha-beta

filter should be selected. If, however, the variance in the alpha

filter's smoothed position estimates does not increase rapidly enough,

the tri-state adaptive filter will output the smoothed position estimate

of the alpha filter, even though the aircraft has acquired a lateral

velocity, and thus be in error.
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simulation runs with identical wind and radar noise. One run uses the

alpha-beta control system to guide the aircraft whle the second run

uses the tri-state adaptive control system. Figure 5-9 provides a com-

parison of the performance of the two control systems under the identi-

cal effects of wind and radar noise. The tri-state control system is

seen to perform better than the alpha-beta control system, especially

during the first fifty seconds of the simulation run.

The improvement in performance that the tri-state adaptive control

system has over the alpha-beta control system is due to the tri-state

adaptive filter's more accurate estimates of velocity. Shown in Figure

5-10 is a comparison of the actual aircraft lateral velocity to the

alpha-beta filter estimates of velocity. A comparison of the actual

aircraft lateral velocity to the tri-state adaptive filter estimates is

shown in Figure 5-11. A tabular comparison of the mean square error

in the two filter's velocity estimates is given in Table 5-7. The tri-

state adaptive filter's ability to more accurately estimate the air-

craft's lateral velocity is the key to the improvement in the performance

of the tri-state adaptive control system over the alpha-beta control sys-

tem presently used in the system.

I
I
I

I
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VI. CONCLUSIONS

Three digital tracking filters, each based upon a different air-

craft dynamical model, were combined to form the tri-state adaptive

tracking filter. The selection of the appropriate filter output was

determined by the variance of the filters' smoothed position estimates.

The tri-state adaptive filter was implemented in the simulation of the

F4J lateral control system. The results given in Chapter V suggest that

the performance of the F4J lateral control system may be improved

through the use of a tri-state adaptive tracking filter. Since the F4J

longitudinal control system is structurally identical to the lateral

control system, the tri-state adaptive tracking filter may, in a similar

manner, provide an improvement in the performance of the longitudinal j
control system.

The overall performance of the tri-state adaptive tracking filter

may be enhanced by selecting the parameters of each of the three compo-

nent filters in such a manner as to achieve a more complementary filter

response. Another modification which might improve the performance of

the tri-state adaptive filter is the adjustment of the variance thres-

holds of the alpha and alpha-beta filters. As was shown by the results

of the F4J lateral control system simulation, the frequency response of

the tri-state adaptive filter may be altered by the selection of the ap-

propriate variance thresholds.

91 1
I



BIBLIOGRAPHY

[1] R. E. Kalman, "A New Approach to Linear Filtering and Prediction
Problems," J. Basic Engineering, Transactions of ASME, Ser. D,
Vol. 82, pp. 35-45, March 1960.

[2] R. G. Brown and R. F. Meyer, "The Fundamental Theorem of Exponen-
tial Smoothing," Operations Research, Vol. 9, 1961, pp. 673-687.

[3] T. R. Benedict and G. W. Bordner, "Synthesis of an Optimal Set of
Radar Track-While-Scan Smoothing Equations," IRE Transactions on
Automatic Control, Vol. AC-7, pp. 27-32, July 1962.

[4] H. R. Simpson, "Performance Measures and Optimization Condition
for a Third Order Tracker," IEEE Transactions on Automatic Control,
Vol. AC-8, pp. 182-183, April 1963.

[5] R. G. Brown, Smoothing Forecasting and Prediction of Discrete
Time Series. Prentice Hall, Englewood Cliffs, 11J, 1963.

[6] A. C. Watts, "On Exponential Smoothing of Discrete Time Series,"
IEEE Transactions on Information Theory, September 1970, p. 630.

[7] J. R. Ragazzini and G. F. Franklin, Sampled Data Control Systems.
McGraw-Hill Book Co., Inc., New York, NY, 1958.

[8] J. Sklansky, "Optimizing the Dynamic Parameters of a Track-While-
Scan System," RCA Review, Vol. 18, pp. 163-185, June 1957.

[9] J. A. Cadzow, Discrete Time Systems. frentice-Hall, Englewood
Cliffs, NJ, 1973.

[10] E. I. Jury, Theory and Application of The Z-Transform Method.
Robert E. Krieger Publishing Co., Huntingdon, NY, 1973.

[11] E. J. Routh, Dynamics of a System of Rigid Bodies. Macmillan,
New York, NY, 1892.

[12] R. E. Wilcox,"The a-a-y Tracking Filter in the Z-Domain," IEEE
National Aerospace and Electronics Conference, 1979. pp. 1042-
1046.

[13] Robert C. Weast, CRC Mathematical Handbook, Chemical
Rubber Co., Cleveland, OH, 1966.

92

-I -



93

[14] R. A. Singer and K. W. Behnke, "Real Time Tracking Filter Evalua-
tion and Selection for Tactical Applications," IEEE Transactions
on Aerospace and Electronic Systems, Vol. AES-7, No. 1, pp. 100-

0lO, January 197].

[15] S. R. Neal, "Discussion on Parametric Relations for the c-B-y Fil-
ter Predictor," IEEE Transactions on Automatic Control, pp. 315-
317, June 1967.

[16] Charles L. Phillips, Edward R. Graf, and H. Troy Nagle, Jr.,
"Marine Air Traffic Control and Landing System Error and Stability
Analysis," Vol. I and 2. Contract N00228-75-C-7080, Auburn Uni-
versity, AL, 1975.

[17] Edward R. Graf, Scott A. Starks, Charles L. Phillips, and Robert
W. Simpson, "tlarine Air Traffic Control and Landing System Con-
trol, Radar, and Software Analysis," Contract N00228-78-C-2233,
Auburn University, Auburn University, AL, 1978.

[18] "MATCALS-AN/TPN-22 Mode I Final Report," ITT Gilfillan Technical
Report, prepared for Naval Electronics Systems Command, Contract
N00039-75-C-0021, August 1979.

[19] K. Steiglitz, An Introduction to Discrete Systems. John Wiley
and Sons, Inc., New York, NY, 1974.



APPENDIX

94



95

SUBROUTINE FILBNK (RADR)
COMMON/RANG/RANGE
COMMON/FILCON/SMP,SMV
DIMENSION SPI(8), SP2(8), DIFI(8), DlF2(8)
DATA SPI/8*0.0/,SP2/8*0.0/,DIF1/8*0.0/,D]F2/8*0.O/

C
C CONVERT INPUT NOISE VARIANCE, VRP, FROM RADIANS TO FEET.
C

VRP=4.225E-O7*(RANGE**2)
C
C SET L, THE LENGTH OF THE SHIFT REGISTERS.
C

L=5
L2=L-l

C
C TT=SAMPLE INTERVAL=.l SEC.
C Al IS THE POSITION SMOOTHING CONSTANT OF THE ALPHA FILTER.
C A2 IS THE POSITION SMOOTHING CONSTANT OF THE ALPHA-BETA FILTER.
C B2 IS THE VELOCITY SMOOTHING CONSTANT OF THE ALPHA-BETA FILTER.
C A3 IS THE POSITION SMOOTHING CONSTANT OF THE ALPHA-BETA-GAMMA FILTER.
C B3 IS THE VELOCITY SMOOTHING CONSTANT OF THE ALPHA-BETA-GAMMA FILTER.
C G IS THE ACCELERATION SMOOTHING CONSTANT OF THE ALPHA-BETA-GAMMA FILTER.
C
C RADR=RADAR MEASUREMENT OF AZIMUTH INPUT TO SUBROUTINE.
C SPI(L)=L-LENGTH ARRAY CONTAINING THE LAST L-VALUES OF THE ALPHA

FILTER'S SMOOTH POSITION ESTIMATES.
C SP2(L)-L LENGTH ARRAY CONTAINING THE LAST L-VALUES OF THE ALPHA-BETA

FILTER'S SMOOTH POSITION ESTIMATES.
C SP3=ALPHA-BETA-GAMMA FILTER'S SMOOTH POSITION ESTIMATE.
C SVl=ALPHA FILTER'S SMOOTH VELOCITY ESTIMATE
C SV2=ALPHA-BETA FILTER'S SMOOTH VELOCITY ESTIMATE.
C SV3:ALPHA-BETA-GAMMA FILTER S SMOOTH VELOCITY ESTIMATE.
C SA3=ALPHA-BETA-GAMMA FILTER'S SMOOTH ACCELERATION ESTIMATE.

C
Al=0.15
A2=0.51
B2=(A2**2)/(2.0-A2)
A3=0.46864
B3=0.10136
G=0.000684

C
C CALCULATE THE VARIANCE THRESHOLDS FOR THE ALPHA FILTER AND THE ALPHA-

BETA FILTER.
C VOUTl=VARIANCE THRESHOLD OF THE ALPHA FILTER.
C VOUT2=VARIANCE THRESHOLD OF THE ALPHA-BETA FILTER.
C

VOUTI=(AI/2.0-Al)*VRP
VOUTI=0.6*VOUTl
VOUT2=((2.*(A2**2)+B2*(2.-3.*A2))/(A2*(4.-B2*A2)))*VRP

C
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C SHIFT SMOOTH POSITION ESTIMATES IN SHIFT REGISTERS
C

DO 5 II, L2
SP1(L+1-I) = SPI(L-I)
SP2(L+l-I) = SPI(L-I)

5 CONTINUE
C START FILTERS AFTER TWO MEASUREMENTS

IF (T.GF.O.2) GO TO 10
C INITIALIZE THE SMOOTHED VALUES OF POSITION, VELOCITY AND ACCELERATION

SPi (1)=O
SP2(1 )=o
SP3=O
SV1:O

SV2=O
SA3=0

C COMPUTE PREDICTED POSITIONS AND VELOCITIES FOR THE THREE FILTERS
10 PPI=SPI(1)

PP2=SP2(1 )+TT*SV2
PP3=SP3+TT*SV3
PVI=O
PV2=SV2
PV3=SP3+TT*SA3

C COMPUTE THE SMOOTHED ESTIMATES OF POSITION, VELOCITY AND ACCELERATION
C FOR THE THREE FILTERS

SPi (1)=(l.-Al )*SP1+AI*SPI (1)
SP2(1 )=PP2+A2*(RADR-PP2)
SP3=PP3+A3* (RADR-PP3)
SVl=O
SV2=PV2+(B2/TT)* (RADR-PP2)

SV3=PV3+(B3/TT)*(RADR-PP3)
SA3=SA3+C G/(TT**2) )*(RADR-PP3)

C
C CALCULATE THE MEAN OF THE ALPHA AND ALPHA-BETA FILTERS'
C SMOOTHED POSITION.
C

MSP1=0
MSP2=0
00 20 1=1, L
MSPI =MSPI .-SP1 (I)
MSP2=MSP2+SP2 (I)

20 CONTINUE
MSPI=MSPI/L
MSP2=MSP2/L

C
C CALCULATE THE VARIANCE IN SMOOTHED POSITION OF THE ALPHA
C AND ALPHA-BETA FILTERS.
C DO 30 1=1, L

DiFl (I)=(SP1 (1)-MSPI)**2
DI F2(1)=(SP2(I)-tlSP2)**2

30 CONTINUE

r



97

VSPI O
VSP2=0
DO 40 1=1, L
VSPl =VSPI +D Fl (I)
VSP2=VSP2+DIF2(I)

40 CONTINUE
VSP1=VSPI/L
VSP2=VSP2/L

C

C IF THE VARIANCE IN SMOOTHED POSITION OF THE ALPHA FILTER IS LESS THAN
THE ALPHA FILTER'S VARIANCE THRESHOLD, THEN OUTPUT POSITION=SPI(1)
AND 0 'PUT VELOCITY=O

C
C IF (VSP].GT.VOUTI) GO TO 50

SMP=SP1 (l)
SMV=O
RETURN

C
C IF THE VARIANCE IN SMOOTHED POSITION OF THE ALPHA-BETA FILTER
C IS LESS THAN THE ALPHA-BETA FILTER'S VARIANCE THRESHOLD, THEN OUTPUT
C POSITION=SP2(1) AND OUTPUT VELOCITY=SV2.
C
50 IF (VSP2.GT.VOUT2) GO TO 60

SMP=SP2U()
SMV=SV2
RETURN

C

C IF THE SMOOTH POSITION ESTIMATES OF THE ALPHA FILTER AND THE ALPHA- j
C BETA FILTER ARE FOUND TO BE INACCURATE THEN OUTPUT POSITION=SP3 AND
C OUTPUT VELOCITY=SV3.
Cf
60 SMP=SP3

SMV=SV3
RETURN
END

.1
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